Drosophila Lab Report

Drosophila Lab Report. Drosophila lab report.

1) I will upload for you the drosophila lab report Rubric.

2) I will upload the data of F2 phenotype.

3) the lab report expected ratios:

independent assortment 9:3:3:3

Genetics linkage 9:3:3:1

x linked / autosomal 2:1:1 ( female wt : male wt: male mutant )

3:1 ( wt : mutant ) apterous.

4) I will upload an introduction for this lab report but at the same time there is a lot of mistakes , you have to read the comment and correct them.

be careful please about the plagiarism and the read the citation required

not any citation be allowed, there is a required citation like peer review , journal …………………

1

 

Sandy Yossef Comment by Elizabeth Jackson: Grade:-2 hypotheses-2 chromosome locations-2 mutant lines-1 citation formatting-1 missing lab manual and flybase sources-1 grammar/italics6/15

Genetics lab

BIOL 3251-010

Assignment 1

Drosophila melanogaster, the common fruit fly, is a well-known model organism used for genetic research. The laboratory exercise will aid in differentiating normal ‘wild type’ and various mutant phenotypes of the fruit fly. The laboratory exercise will help in developing an understanding of the connection between the presence and absence of genetic trait of the general fruit fly population. Comment by Elizabeth Jackson: Drosophila melanogasterItalicize scientific names.Also, you should start with a statement about genetic inheritance. Comment by Elizabeth Jackson: It is too early in the introduction to talk about your own project. Focus on background information first.

Genetic science has identified and documented over 2,500 species of Drosophila. Out of these numbers of Drosophila one specie; Drosophila melanogaster (Fruit fly) has been primarily exploited as a model for genetic research. The D. melanogaster is the most suitable model for genetic work because of its short life cycle. This species lives for about 10 to 11 days and its optimum survival temperature is 220 C (Wangler, Yamamoto & Bellen, 2015). Another primary model advantage is that D. melanogaster has high reproductive potential. The species reproduces a large number of progeny. Such a large number of progeny is required for statistical analysis of results (Wolf, & Rockman, 2008). The general characteristics of genetic model organisms include a short generation time, a large number of progeny and easy genetic manipulation. Comment by Elizabeth Jackson: You need a citation for this.

Genetic scientists still have numerous biological processes to discover. The D. melanogaster has many possibilities because this model can quickly and efficiently answer questions of biological phenomena (Wangler, Yamamoto & Bellen, 2015). The D. melanogaster is an excellent model because it has a translational impact for genetic disease and a large number of medical implications including vector-borne illnesses. Comment by Elizabeth Jackson: You need citations for sentences like this.

This laboratory will use a wild-type D. melanogaster. Both male and females will use. The two sexes are differentiated in ways of physical characteristics. For example, males have a sex comb, a fringe of black bristles on their forelegs (Wolf, & Rockman, 2008). The male’s abdomens are elongate and rounded in males, but characteristically pointed in females. The wild type is the naturally occurring fly with not mutation. Other mutant flies that are common in the laboratory during breeding and that needs to be isolated from the wild-type ebony mutants that exhibit a much darker body as compared to the wild type fly (Wolf, & Rockman, 2008). Other common mutants are referred to as white-eyed female, wild type heterozygote female, white-eyed male, and wild type male. Comment by Elizabeth Jackson: Did we use this as a method for sexing the flies? Comment by Elizabeth Jackson: We didn’t look at ebony mutants in this lab. Comment by Elizabeth Jackson: This sentence doesn’t really make sense. You say “other common mutants”, but then you mention wildtypes. By definition, wildtypes are the exact opposite of mutants.

Flies with shortened wings are referred to as having vestigial genes that occur in the second chromosome. The vestigial genes occur due to recessive vg allele that specifies short vestigial wings. The flies have a recessive mutation of vestigial genes that occur in the second chromosome for both parents (Wolf, & Rockman, 2008). Other flies exhibit curled wings resulting from curly genes that also occur in the second chromosome. The flies those are yellow than normal exhibit yellow genes resulting from mutations occurring in the X chromosome (Wolf, & Rockman, 2008). The dark bodied flies carry a defect in their eye resulting to flies with phenotypic ebony genes. The ebony genes occur in the third chromosome and are responsible for building up a tan-coloured pigment. Comment by Elizabeth Jackson: Did you use flybase for this? If so, you need a citation. Comment by Elizabeth Jackson: We didn’t look at curled wings.

Complete and incomplete linkages in D. melanogaster occur independently. For example, the grey body and the long wing phenotype of this fly dominate over the black body and vestigial wings characteristics. Crossing over of genes occurs in the first generation, but the phonotype does not continue to the second generation (Garud, Messer, Buzbas, & Petrov, 2015). However, if the cross-over continued to the next generation it could be referred to as a complete linkage. Complete linkage in D. melanogaster genes is a rarity among female phenotype, but is common among the male mutant phenotype. The male mutant genes are closely associated and always transmitted together.

Reference

Garud, N. R., Messer, P. W., Buzbas, E. O., & Petrov, D. A. (2015). Recent selective sweeps in North American Drosophila melanogaster show signatures of soft sweeps. PLoS genetics, 11(2), e1005004. Comment by Elizabeth Jackson: The first authors of your citations are correct, with their last names first, followed by their first and middle initials. The other authors should have their initials first, followed by their last names. Comment by Elizabeth Jackson: Drosophila melanogaster

Wolf, M. J., & Rockman, H. A. (2008). Drosophila melanogaster as a model system for the genetics of postnatal cardiac function. Drug Discovery Today: Disease Models, 5(3), 117-123.

Wangler, M. F., Yamamoto, S., & Bellen, H. J. (2015). Fruit flies in biomedical research. Genetics, genetics-114.

Drosophila Lab Report

 
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"

Biology blood typing lab report

Biology blood typing lab report.

1

BIOL 102: Lab 9

Simulated ABO and Rh Blood Typing

Objectives:

After completing this laboratory assignment, students will be able to:

• explain the biology of blood typing systems ABO and Rh

• explain the genetics of blood types

• determine the blood types of several patients

Introduction:

Before Karl Landsteiner discovered the ABO human blood groups in 1901, it was thought that all blood was the

same. This misunderstanding led to fatal blood transfusions. Later, in 1940, Landsteiner was part of a team

who discovered another blood group, the Rh blood group system. There are many blood group systems known

today, but the ABO and the Rh blood groups are the most important ones used for blood transfusions. The

designation Rh is derived from the Rhesus monkey in which the existence of the Rh blood group was

discovered.

Although all blood is made of the same basic elements, not all blood is alike. In fact, there are eight different

common blood types, which are determined by the presence or absence of certain antigens – substances that

can trigger an immune response if they are foreign to the body – on the surface of the red blood cells (RBCs

also known as erythrocytes).

ABO System:

The antigens on RBCs are agglutinating antigens or agglutinogens. They have been designated as A and B.

Antibodies against antigens A and B begin to build up in the blood plasma shortly after birth. A person

normally produces antibodies (agglutinins) against those antigens that are not present on his/her erythrocytes

but does not produce antibodies against those antigens that are present on his/her erythrocytes.

• A person who is blood type A will have A antigens on the surface of her/his RBCs and will have

antibodies against B antigens (anti-B antibodies). See picture below.

• A person with blood type B will have B antigens on the surface of her/his RBCs and will have antibodies

against antigen A (anti-A antibodies).

• A person with blood type O will have neither A nor B antigens on the surface of her/his RBCs and has

BOTH anti-A and anti-B antibodies.

• A person with blood type AB will have both A and B antigens on the surface of her/his RBCs and has

neither anti-A nor anti-B antibodies.

The individual’s blood type is based on the antigens (not the antibodies) he/she has. The four blood groups

are known as types A, B, AB, and O. Blood type O, characterized by an absence of A and B agglutinogens, is

the most common in the United States (45% of the population). Type A is the next in frequency, found in 39%

of the population. The incidences of types B and AB are 12% and 4%, respectively.

 

 

 

 

 

 

 

2

 

Table 1: The ABO System

Blood Type

Antigens on RBCs

Antibodies in the Blood

Can GIVE Blood to Groups:

Can RECEIVE Blood from Groups:

A A Anti-B A, AB O, A

B B Anti-A B, AB O, B

AB A and B Neither anti-A

nor anti-B AB O, A, B, AB

O Neither A nor

B Both anti-A and anti-B

O, A, B, AB O

 

Blood Typing: Process of Agglutination

Blood typing is performed with antisera containing high levels of anti-A and anti-B antibodies/agglutinins. The

simple test is performed as follows:

 

Several drops of each kind of antiserum are added to separate samples of

blood. If agglutination (clumping of erythrocytes) occurs only in the

suspension to which only anti-A serum was added, the blood type is A. If

agglutination occurs only in the anti-B mixture, the blood type is B (see image).

Agglutination in both samples indicates that the blood type is AB. The absence

of agglutination indicates that the blood type is O.

 

 

 

 

Table 2: Agglutination Reaction of ABO Blood-Typing Sera

Reaction to Anti-A Serum Reaction to Anti-B Serum Blood Type

Agglutination (clumping)

No agglutination (no clumping)

Type A

No agglutination (no clumping)

Agglutination (clumping)

Type B

Agglutination (clumping)

Agglutination (clumping)

Type AB

No agglutination (clumping)

No agglutination (clumping)

Type O

 

 

 

3

 

Rh System

In the period between 1900 and 1940, a great deal of research was done to discover the presence of other

antigens on human red blood cells. In 1940, an antigen designated as Rh factor, was discovered. Although it

exists as six antigens, the D factor is responsible for the Rh+ condition. The Rh factor is found in 85% of

Caucasians, 94% of African-Americans, and 99% of Asians. An individual who possesses these antigens is

designated as Rh+; an individual who lacks them is designated Rh-. The anti-Rh antibodies of the systems are

not normally present in the plasma, but anti-Rh antibodies can be produced upon exposure and sensitization to

Rh antigens.

The genetics of the Rh blood group system is complicated by the fact that more than one antigen can be

identified as the result of the presence of a given Rh gene. Initially, the Rh phenotype was thought to be

determined by a single pair of alleles. However, there are at least eight alleles for the Rh factor. For the

purpose of simplicity, consider one allele: Rh+ is dominant over Rh-. Thus a person with Rh+/Rh-

heterozygous genotype has Rh+ blood.

Importance of Blood Typing

Early attempts to transfer blood from one person to another produced varied results. If incompatible blood

types are mixed, erythrocyte destruction, agglutination and other problems can occur. For instance, if a person

with Type B blood is transfused with blood type A, the recipient’s anti-A antibodies will attack the incompatible

Type A erythrocytes. The Type A erythrocytes will be agglutinated, and hemoglobin will be released into the

plasma. In addition, incoming anti-B antibodies of the Type A blood may also attack the Type B erythrocytes of

the recipient with similar results. This problem may not be serious, unless a large amount of blood is

transfused.

The ABO blood groups and other inherited antigenic characteristics of red blood cells are often used in

medico-legal situations involving identification or disputed paternity. In paternity cases a comparison of the

blood groups of mother, child, and alleged father may exclude the man as a possible parent of the child. For

example, a child of blood type AB whose mother is Type A could not have as a father a man whose blood

group is Type O. Blood typing does not prove that an individual is the father of a child, it merely indicates

whether or not he is a possible parent.

 

 

4

The Genetics of Blood Types

Alleles are different versions of the same gene that can occupy the same locus (gene location on a

chromosome). There are usually two alleles of each gene. Humans have two copies of each gene because

they receive one copy from their mother and one copy from their father. If they receive two of the same alleles,

they are considered homozygous. If they have two different alleles, they are considered heterozygous. Alleles

can also be dominant and recessive. Alleles are dominant when the presence of one allele is sufficient to

express the trait and recessive when two copies of the allele must be present to express the trait.

The human blood types A, B, AB, and O are inherited by multiple alleles. Multiple alleles refer to three or more

genes that occupy a single locus. In the case of blood types, there are three versions of the gene which

encodes agglutinogens: A, B and O. The A and B alleles are both dominant and are considered co-dominant.

The O allele is recessive to both A and B alleles.

The alleles for blood types are often designated with the letter I with a subscript:

• The A allele is designated IA and codes for the synthesis of agglutinogen A

• The B allele is designated IB and codes for synthesis of agglutinogen B

• The O allele is designated i or IO and does not produce any antigens.

The phenotypes listed in the table below are produced by the combinations of the three different alleles IA, IB,

and IO.

 

 

 

 

 

 

 

 

Using Punnett Squares to Determine Future Genetic Combinations

A Punnett square is a chart which shows/predicts all possible gene combinations in a cross of parents (whose

genes are known). Punnett squares are named for an English geneticist, Reginald Punnett. He discovered

some basic principles of genetics, including sex linkage and sex determination. He worked with the feather

color traits of chickens in order to quickly separate male and female chickens.

Punnett squares can also be used to predict the blood type of future offspring between two people with a

known genotype. When creating the chart, the first step is to designate letters for dominant and recessive

alleles. It has been previously mentioned that A (IA) and B (IB) are both dominant alleles while O (i) is

recessive; therefore, this step is complete. The second step is to write the genotype (genetic combination) of

each parent and the third step is to list the alleles that each parent can contribute. If the parent is homozygous

(both alleles are either dominant or recessive), then she/he can only pass on the dominant allele that she/he

possesses. If the parent is heterozygous (one allele is dominant and the other allele is recessive or she/he has

both A and B dominant alleles), then he/she can pass on either allele. The fourth step is to draw the Punnett

square (one large square containing four smaller squares) and write the possible genes of one parent along

Table 3: Phenotypes and Possible Genotypes

Phenotype Possible Genotypes

A IA IA (homozygous dominant A) OR

IA i (heterozygous A)

B IB IB (homozygous dominant B) OR

IB i (heterozygous B)

AB IA IB (co-dominant AB)

O ii (homozygous recessive O)

 

 

5

the top and the possible genes of the other parent along the left side. The fifth step is to fill the smaller square

by transferring in the parental letter above the square and the parental letter to the left of the square. The sixth

step is to list all of the possible genotypes (the combinations in each small square) and resultant phenotypes

(physical trait). Figure 1 below is of a cross (mating) between a person who is homozygous dominant A (type

A) and a person who is homozygous recessive (type O).

 

 

 

 

 

 

All of the children would have a heterozygous A genotype and blood type A phenotype.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IA IA

i IA i IA i

i IA i IA i

 

 

6

LAB DATASHEET Purpose Each group will perform blood typing analyses to determine the unknown blood types of four patients using the

ABO and Rh factor systems.

 

Procedure

1. Obtain four (4) blood typing trays and use the wax pencil to label them as follows: P1, P2, P3, and P4.

2. Place five (5) drops of Patient 1 Simulated Blood Sample in each well (A, B, and Rh) of the P1 tray.

a. Place three (3) drops of Anti-A Simulated Serum in Well A and mix the blood and serum with a stirring

stick for ten (10) seconds.

b. Place three (3) drops of Anti-B Simulated Serum in Well B and mix the blood and serum with a stirring

stick for ten (10) seconds.

c. Place three (3) drops of Anti-Rh Simulated Serum in Well Rh and mix the blood and serum with a

stirring stick for ten (10) seconds.

d. Carefully examine each well to determine if the simulated blood in each well has clumped

(agglutinated). Record your results and observations in Table 4.

3. Place five (5) drops of Patient 2 Simulated Blood Sample in each well (A, B, and Rh) of the P2 tray.

Repeat directions “a-d” listed under Step 2.

4. Place five (5) drops of Patient 3 Simulated Blood Sample in each well (A, B, and Rh) of the P3 tray.

Repeat directions “a-d” listed under Step 2.

5. Place five (5) drops of Patient 4 Simulated Blood Sample in each well (A, B, and Rh) of the P4 tray.

Repeat directions “a-d” listed under Step 2.

6. Thoroughly rinse all trays and stirring sticks and return to their proper location.

 

 

 

Table 4: Agglutination Reaction Results

 

Anti-A

Serum

(+ or -)

Anti-B Serum

(+ or -)

Anti-Rh

Serum

(+ or -)

Observations

(Clumping?) Blood Type

Patient 1:

Mr. Smith

Patient 2:

Mr. Jones

Patient 3:

Mr. Green

Patient 4:

Ms. Brown

 

 

7

Analysis of Results

1. What ABO agglutinogens are present on the red blood cells of Mr. Green’s blood?

2. What ABO agglutinins are present in the serum of Mr. Green’s blood?

3. If Mr. Jones needed a transfusion, what ABO type(s) of blood could he safely receive?

4. If Ms. Brown were serving as a donor, what ABO blood type(s) could receive her blood safely?

5. Why is it necessary to match the donor’s and the recipient’s blood before a transfusion is given?

Biology blood typing lab report

 
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"

Marine Biology 180

Marine Biology 180. How to Effectively Write a Fact-supported Essay

1. University standard. Write a 10-15 sentence, fact-supported, essay answer to your assigned weekly question(s).

2. How to determine your assigned weekly essay question(s)? You will be answering the “Study Guide Questions” (found under Course Content), for the assigned weekly textbook chapters listed in your Class and Assignment Schedule. These are excellent questions representing the most important concepts in our course. Therefore, if you cut-and-paste your classmates’ correct answers to these weekly questions, you will have created an excellent Study Guide (questions plus answers) for studying for your final exam. To determine your assigned question(s), go to the Navigation Bar, Roster, select the Students tab, alphabetize by student’s last name, then count down the list of students to your name. That number is your student number. You only need to check this number once each week, as students will drop the class, causing your number to change. Now, go to the last paragraph in this document and use your class Week number and your student number to determine your assigned essay question(s) to answer. Don’t be concerned that more than one student does the same question(s), as student numbers will change when students drop the course.

3. Mechanics a. Your discussion directions will direct you to submit your work by selecting Start a New Thread. Do not use attachments. b. After the week is over, the discussion is closed to further input so that we can move forward to the next week’s discussions. I will not respond to every discussion that is made, but will be following your submissions and responses, and interjecting when I feel it is appropriate. c. I will interact weekly with each student using a completed discussion grading rubric, so be sure to read them for my feedback. The last paragraph explains where to find them in LEO.

4. Expectations a. Your submission must be thorough, concise, positive, and in essay form using effective writing, with a length of one or two single-spaced paragraphs totaling 10-15 sentences (not including the question(s) or references). Question(s) should be in bold font. Answers should discuss the concept in DETAIL to show your understanding of the topic. If you need more scholarly information on your topic, consider an internet search or a second textbook. b. Your submission must be paraphrased (as explained in UMUC’s “How to Avoid Plagiarism” self-study module), i.e. written in your own words. Do not copy or cut-and-paste from any source. Do not use direct quotes. The reason I insist on this is because (1) student comprehension is significantly increased by paraphrasing instead of copying verbatim material, and (2) UMUC considers copying-and-pasting another author’s work to be plagiarism. Paraphrasing also allows me to identify, and subsequently correct, any misconceptions a student may have with the course material. I will not give credit to an input that gives little detail, or uses verbatim text from an internet site, our course materials, or other source. c. Use APA in-text and reference list citations, which are explained on UMUC’s APA Citation Examples web page, as well as in UMUC’s “How to Avoid Plagiarism” self-study module. Liberally use in-text citations to cite material which is not your own. Use our course materials as your primary reference. You may use other scholarly, peer-reviewed references in addition to our course materials. 1) If using an electronic textbook, use the provided physical textbook page numbers for your citations. 2) If you wish to add an internet reference, be sure to use a paragraph number in its in-text citation if the reference has no page number. The internet address should also be a “hot link” which allows the reader to click on it and be taken directly to the page where you found the information. 3) Use only scholarly references, dated no older than 10 years. Do not use dictionary references. Do not cite commercial web sites (URL ending in “.com”) since they are not scholarly (i.e. peer-reviewed). d. I will evaluate effective writing based on the Maryland Statewide English Composition standard for undergraduate writing which states that writing should be “substantially free of errors in grammar, spelling, punctuation, and mechanics” to earn a “C” grade. e. I will grade your first submission of that week; therefore, submit only final, not draft, versions of your work. For effective writing assistance, you may wish to have UMUC’s Effective Writing Center review your work before submission. f. No late submissions are accepted. Before the deadline, use the “Edit” function to correct errors that I bring to your attention.

5. Discussion example with errors. To read error comments, you will need to use Microsoft Word and select View => Print Layout. Paragraph 5 provides a corrected version.

Discussion subject line: Jones Comment by Dennis Whitford: Missing question number

2. Differentiate between marine biology, biological oceanography, and oceanography. Comment by Dennis Whitford: Did not bold question number and question

Marine biology is closely related to both oceanography and biological oceanography, a subset of oceanography. (Castro & Huber, 2013, p. 2) If you were studying marine organisms, and how they interact with their environment and other marine organisms, you would be studying marine biology (Begin et al., 2014, p. 2). However, if you were studying the ocean from the perspective of one, or many, natural sciences, such as biology, geology, etc., you would be studying oceanography (Begin, Wurzbacher, & Cucknell, 2014, p. 2). Comment by Dennis Whitford: End-of-sentence punctuation comes after the in-text citation Comment by Denny Whitford: Format: first use in a paragraph of a multi-author reference must use all author’s names. Comment by Denny Whitford: 2nd and subsequent use in a paragraph of multi-author ref can use all authors or use the shortened “et al.” version.

Castro & Huber (2013) explain that marine biology is the study of biology applied to the sea, and that scientific study of the ocean is oceanography (p.2). Oceanography, being a broad area of study, are split into many branches, including biological oceanography (Castro & Huber, 2013, p. 2). Often, marine biology and biological oceanography are hard to set apart from each other. However, there are a few dissimilarities that can be pointed out. Castro & Huber (2013) explain that marine biologists focus their examination to marine organisms which live closer to the shoreline (and sometimes on terrestrial organisms), while biological oceanographers spend their attention on organisms in the deep, open ocean (p. 2). Meteorologists study the weather and climate. Marine biologists focus their attention on the roles and life cycles of the organsm, while biological oceanographers focus their attention on the effects of the organism on the ocean as a whole (Castro & Huber, p. 2). More specifically, marine biologists show interest in the reproduction, physiology, or biochemistry specific to the marine organism which they are studying (Marine Biology & Biological Oceanography, 2010, para. 1). On the other hand, biological oceanographers focus on the ecological effects of the organisms they study; especially taking into account the different physical characteristics of the ocean environment they live in (Marine Biology & Biological Oceanography, 2010). However, these distinctions are not very easy to draw, and there are many exceptions, meaning that some scientists consider these two branches to be the same (Castro & Huber, 2013, p. 2). Comment by Dennis Whitford: Missing blank space Comment by Dennis Whitford: Ineffective writing (grammar) Comment by Dennis Whitford: Irrelevant statement Comment by Dennis Whitford: Ineffective writing (spelling) Comment by Dennis Whitford: Missing year

References:

Bégin, C., Wurzbacher, J., & Cucknell, M. (2014). BIOL 181: Life in the oceans – Lecture notes. Posted in University of Maryland University College (UMUC) BIOL 181 online classroom, archived at UMUC, Adelphi MD.

Castro, P., & Huber, M. E. (2013). Marine Biology (9th ed.). New York: McGraw-Hill Higher Education Comment by Dennis Whitford: Incorrect capitalization and missing italics Comment by Dennis Whitford: Missing ending period

(2010). Marine Biology & Biological Oceanography. Retrieved June 5, 2010, from http://www.lifesci.ucsb.edu/eemb/programs/graduate/research/marine_biology/marine_biology.html . Comment by Dennis Whitford: Incorrect reference list citation format for an Internet citation Comment by Dennis Whitford: Missing hyperlink

Errors Not shown:

Essay did not answer question that was asked

Verbatim copying of any material from textbook or another source

Failure to use any in-text citations Use of quotations rather than mandatory paraphrasing

 

5. Same discussion example, with all errors corrected. This submission scores 100%.

Discussion subject line: Jones, Question #2

2. Differentiate between marine biology, biological oceanography, and oceanography.

Marine biology is closely related to both oceanography and biological oceanography, a subset of oceanography (Castro & Huber, 2013, p. 2). If you were studying marine organisms, and how they interact with their environment and other marine organisms, you would be studying marine biology (Begin, Wurzbacher, & Cucknell, 2014, p. 2). However, if you were studying the ocean from the perspective of one, or many, natural sciences, such as biology, geology, etc., you would be studying oceanography (Begin et al., 2014, p. 2).

Castro & Huber (2013) explain that marine biology is the study of biology applied to the sea, and that scientific study of the ocean is oceanography (p. 2). Oceanography, being a broad area of study, is split into many branches, including biological oceanography (Castro & Huber, 2013, p. 2). Often, marine biology and biological oceanography are hard to set apart from each other. However, there are a few dissimilarities that can be pointed out. Castro & Huber (2013) explain that marine biologists focus their examination to marine organisms which live closer to the shoreline (and sometimes on terrestrial organisms), while biological oceanographers spend their attention on organisms in the deep, open ocean (p. 2). Marine biologists focus their attention on the roles and life cycles of the organism, while biological oceanographers focus their attention on the effects of the organism on the ocean as a whole (Castro & Huber, 2013, p. 2). More specifically, marine biologists show interest in the reproduction, physiology, or biochemistry specific to the marine organism which they are studying (UCSB, 2010, para. 1). On the other hand, biological oceanographers focus on the ecological effects of the organisms they study; especially taking into account the different physical characteristics of the ocean environment they live in (UCSB, 2010, para. 1). However, these distinctions are not very easy to draw, and there are many exceptions, meaning that some scientists consider these two branches to be the same (Castro & Huber, 2013, p. 2).

References:

Bégin, C., Wurzbacher, J., & Cucknell, M. (2014). BIOL 181: Life in the oceans – Lecture notes. Posted in University of Maryland University College (UMUC) BIOL 181 online classroom, archived at UMUC, Adelphi MD.

Castro, P., & Huber, M. E. (2013). Marine biology (9th ed.). New York: McGraw-Hill Higher Education.

UCSB (2010). Marine biology & biological oceanography. Retrieved June 5, 2010, from http://www.lifesci.ucsb.edu/eemb/programs/graduate/research/marine_biology/marine_biology.html

6. If you are assigned more than one question, divide your submission into smaller parts:

Question A

Answer A

Question B

Answer B

Question C

Answer C

Note the 10-15 sentence requirement applies to your entire submission, and not to each of the multiple questions.

 

7. Your discussion grading rubric template is provided in LEO with the discussion directions. After the discussion due date, you can read the completed (1) rubric feedback and score and (2) grade feedback by going to: My Tools, User Progress.

 

8. Now, go to the tables below and use your student number and class Week number to determine your assigned essay question(s) to answer. Don’t be concerned that more than one student does the same question, as student numbers may change in the middle of a week.

 

 

.

 

 

 

2

 

BIOL 181 Week 1BIOL 181 Week 3

Student

chques

Student

chques

Student

chques

Student

chques

Student

chques

Student

chques

#

##

#

##

#

##

#

##

#

##

#

##

1111225231116112732384

2121326241226213742485

3131427251336314752586

4141528261446415762687

5151629271556516772788

61617210281666617782861

71718211291776718792962

821192123021868197103063

92220213312296920813164

1023212143223107121823265

1124222153324117222833366

BIOL 181 Week 4BIOL 181 Week 5

Student

chques

Student

chques

Student

chques

Student

chques

Student

chques

Student

chques

#

##

#

##

#

##

#

##

#

##

#

##

191129122311211211213123141

292131012411321221313224142

393141022511431231413325143

494151032611541241513426144

59516104279151251613527145

69617105289261261713628146

79718106299371271813729147

89819107309481281913830148

99920108319591292013931149

10910211093296101210211310321410

11911221113397111211221311331411

BIOL 181 Week 6 (if SG questions are assigned)BIOL 181 Week 7 (if SG questions are assigned)

Student

chques

Student

chques

Student

chques

Student

chques

Student

chques

Student

chques

#

##

#

##

#

##

#

##

#

##

#

##

11511215122317311811219423206

2152131612417421821319524207

3153141622517531831419625208

4154151632617641841519726209

5155161642717751851619827211

6156171652817861861719928212

7157181662917971871820129213

81581916730171081881920230214

9159201683115191912020331215

1015102117132152101922120432216

1115112217233153111932220533217

Marine Biology 180

 
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"

SCIN 130 Lab 4: Stickleback Evolution,

SCIN 130 Lab 4: Stickleback Evolution,.

SCIN 130 Lab 4: Stickleback Evolution, Part 2

 

General Instructions

 

Be sure to read the general instructions from the Lessons portion of the class prior to completing this packet.

 

Remember, you are to upload this packet with your quiz for the week!

 

Background

In this experiment, you will analyze the pelvic structures of stickleback fish collected from two lakes around Cook Inlet, Alaska, to determine whether there are significant differences between the two populations. You will then use your data and information about the lakes to draw conclusions about the possible environmental factors affecting the evolution of pelvis morphology.

 

 

Specific Lab Instructions

 

Name:

Date:

 

Return to: The Virtual Stickleback Evolution Lab

 

You are going to perform Experiment 2 for the Stickleback lab this week.

 

Begin with Tutorial 2. When you are comfortable scoring a pelvis in fossil fish, you may move on (Note: it is a little more difficult in fossils than live fish, so you may want to spend a little time here).

 

1. What score would you assign to a fossil specimen that has only one pelvic spine visible?

2. A stickleback fossil may show no signs of pelvic structures. What are possible sources of error associated with scoring the pelvis of such a fossil as “absent”?

 

When you feel you have mastered scoring fossils, you may move on to Experiment 2.

1. In your own words describe the overall objective of Experiment 2 and explain what the data you collect will allow you to estimate.

 

2. What is one type of information that researchers can gain from studying fossils that they cannot obtain from living populations?

 

SCIN130 Lab 4: Stickleback Evolution, Part 2

 

V1 04.2018 Felicetti

Page 1 of 9

Begin the experiment in the window on the left. Complete Part 1: Preparing Fossils (click on the bench to get started).

 

3. You will collect data on pelvic structures using fossils from rock layers 2 and 5. Approximately how many years of deposition separate these two layers?

 

4. Which layer is older, 2 or 5? Explain your answer.

 

 

 

Complete Part 2 of the lab in the window on the left.

Score Your Fossils

 

 

5. Based on the pelvic phenotypes you measured, do the fossils in layer 2 differ from those in layer 5? Explain how.

 

6. After your collect data for the pelvic phenotype in layers 2 and 5, add your totals, and submit. As in lab 3, you may use the graph feature in the program as it works fine, or you can create your own Excel graph. Insert a screenshot here.

7. How do your data compare to those collected by Dr. Bell and colleagues?

 

8. Take the quiz. What can be inferred about the presence or absence of predatory fish when the Truckee Formation was a lake? Describe the evidence.

 

9. After completing the quiz, click on Experiment 2 Analysis.

10.

11. Complete the tables below as you perform the rate calculations. (The link to the instructions is very helpful.)

Sample Layer Number of Fish with a Complete Pelvis Total Number of Fish Sampled Relative Frequency of Complete Pelvis Trait in Population Sampled
1

2

3

4

5

6

 

Time Decrease in Percentage of Complete Pelvis Trait per Thousand Years (Rate of Change)
First 3,000 years (Layer 1 to Layer 2)

Next 3,000 years (Layer 2 to Layer 3)

Next 3,000 years (Layer 3 to Layer 4)

Next 3,000 years (Layer 4 to Layer 5)

Next 3,000 years (Layer 5 to Layer 6)

Total 15,000 years (Layer 1 to Layer 6)

 

 

1. What does it mean when the rate of change is a negative number?

 

2. Complete the Analysis Quiz.

3. Describe the trend in the data over time.

 

4. Why is it important to calculate the rate of change over time?

 

5.

6. In what way is the change in the complete pelvis phenotype in the fossils from the Nevada lakebed similar to what might have occurred in Bear Paw Lake from Experiment 1?

 

 

 

 

Adapted from: Brokaw, A. (2013). Stickleback Evolution Virtual Lab. HHMI Biointeractive Teaching Materials.

SCIN 130 Lab 4: Stickleback Evolution,

 
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"