Lab 05: Photosynthesis

Lab 05: Photosynthesis. To submit this assignment, students will complete the Lab Worksheet on pages 7-10, then upload their completed document as a DOC or PDF file in Canvas

 

BIO 101 Lab 08: Photosynthesis

 

Notification: If you have a disability that makes it difficult to complete this lab, please contact your instructor. Please provide your instructor a copy of the Memorandum of Accommodation (MOA) from NVCC Disability Support Services.

 

Objectives:________________________________________________________________

· Determine the effects of light on the rate of photosynthesis

· Determine the absorption spectrum of leaf pigments

 

Background:_______________________________________________________________

Sunlight provides the majority of energy for organisms living in most ecosystems, however only a subset of organisms are capable of harvesting this energy. Plants use their chloroplasts to absorb the energy from sunlight. This energy is then stored in the covalent bonds of glucose, a simple sugar, and can be used by the plant for structural purposes (cellulose), as usable energy (ATP generation), or for energy storage (starch). Animals can eat plants to obtain glucose and produce energy through a process called cellular respiration.

 

The overall reaction for photosynthesis is represented by the chemical equation:

 

6 CO2 + 6 H2O + sunlight → C6H12O6 + 6 O2

 

The entire process is complex and involves many enzymatic reactions. You may notice that the photosynthesis reaction is nearly the exact reverse of cellular respiration. From the equation above the three key elements for photosynthesis to occur are carbon dioxide (CO2), water (H2O), and light. If any of the three are missing from the system then photosynthesis will not occur, and glucose production in the plant will be negatively affected.

 

 

 

 

 

 

 

 

 

 

 

There are two phases of photosynthesis: H:BIO101 Lab Manual editsBIO101 XZ VB AS revision 2017Edited AJS512px-Simple_photosynthesis_overview.svg.png

 

1) In the light-dependent phase chlorophyll molecules located in the thylakoid membrane stacks of the chloroplasts absorb the energy from light resulting in the production of ATP and NADPH.

 

2) In the light-independent reactions (the Calvin Cycle) the energy stored in ATP and NADPH is used to ultimately convert carbon dioxide to sugar. The process of taking carbon dioxide from the air to build carbohydrates is called carbon fixation.

 

 

In solution, CO2 can be converted to carbonic acid (H2CO3) when dissolved in water. The carbonic acid will then release hydrogen ions (H+), causing the pH of the solution to decrease.

 

CO2 + H2O H2CO3 HCO3- + H+

 

Bromothymol blue is a pH indicator that changes color based on the pH of a solution. Bromothymol blue turns yellow at lower pH and blue as the pH is increased. This indicator can be used to track respiration (turns yellow as CO2 is added to the system) or photosynthesis (turns blue as CO2 is consumed).

 

Different colors of Bromothymol blue at the indicated pH conditions

 

Light energy is a small part of the electromagnetic spectrum which is visible to the eye. The wavelength of visible light lies between 380 nm and 760 nm. In order to obtain the energy from light, plants must absorb light energy using pigments, namely chlorophyll a, chlorophyll b, carotene and xanthophyll. These pigments show characteristic colors because they do not absorb all light equally. By measuring the absorbance at different wavelengths, the absorption spectrum of the leaf pigments can be obtained.

Materials:__________________________________________________________________

· Internet

 

 

 

Safety:

Follow all standard laboratory safety procedures.

 

Procedure:________________________________________________________________

 

Experiment 1. Observing photosynthesis (work in groups)

1. In the laboratory, you would add about 60 ml of tap water into a beaker and then add about 1 mL of bromothymol blue to the water in the beaker.

 

2. Using a clean straw, you would then gently blow into the solution until the color of the solution turns yellow.

 

3. You would next fill three test tubes 2/3 full with this yellow-colored solution.

 

4. Then, you would place a 3-inch cutting of Elodea into Tube 1 and another 3-inch cutting of Elodea into Tube 2, making sure that the cuttings were completely immersed in the solution. After this, you would wrap Tube 1 with green film. Tube 3 will be left alone and will not contain a plant cutting.

 

5. Watch the following video about setting up the photosynthesis lab from time 0:00 until 5:46.

https://www.youtube.com/watch?v=GWUawtweJGM

 

Ignore the use of a second plant in the video, we only use Elodea in this laboratory activity. In the video, Tubes 1 and 2 contain Elodea plant cuttings and Tube 1 is wrapped in foil instead of green film.

In our photosynthesis lab experiment, we wrap Tube 1 in green film, which only allows green-colored light to reach the Elodea plant cutting. The green film we use ends up having the same effect as the aluminum foil used in the video.

 

6. In Table 1 in the Lab Worksheet, record the color of the solution before blowing into it in the “before exhaling” column.

 

7. In Table 1 in the Lab Worksheet, record the color of the solution after blowing into is in the “after exhaling column.

 

8. Answer question 1 in the Lab Worksheet

 

9. In the laboratory, you would then place the test tubes in front of a light source such as a fluorescent lamp. You would allow the tubes to be exposed to the light for 1 hour.

 

10. Record the color of the solution in each test tube in Table 2 of the Lab Worksheet

 

11. Make a hypothesis about how the color of bromothymol blue solution in each test tube will change and record the color you expect for each tube in Table 2 in the “Expected Color after 1 hour of light exposure” column.

 

When making a hypothesis, consider why the pH-indicating solution turned color in the first place and what might happen if the substance that caused the color change was removed by a plant performing photosynthesis.

 

12. Watch the following video showing the results of photosynthesis lab from time 0:00 until 2:41.

https://www.youtube.com/watch?v=SZsQG_rPJwQ

In the video, Vial A corresponds to Tube 1 in our photosynthesis lab experiment. Ignore Vial B from the video. Vial C in the video corresponds to Tube 2 in our photosynthesis lab experiment and Vial D in the video corresponds to Tube 3 (the control).

Note that in our photosynthesis lab experiment, we wrap Tube 2 in green film, which only allows green-colored light to reach the Elodea plant cutting. The green film we use ends up having the same effect as the aluminum foil used in the video.

 

13. Using the results diagrammed below, fill in Table 2 in the Lab Worksheet

 

 

14. Record the color you observe for each test tube in Table 2 in the “Observed color” column.

 

15. Answer questions 2 – 3 in the Lab Worksheet.

 

 

Experiment 2. Absorption spectrum of leaf extract (work in groups)

1. In the laboratory, you would first turn on the spectrophotometer and allow it to warm up for 15 min.

 

2. You would then insert the blank cuvette (which contains alcohol) in sample holder marked “B” and the cuvette containing leaf extract in sample holder “1”, making sure that the orientation of the cuvettes is correct.

 

3. Then, you would select a wavelength to measure and calibrate the spectrophotometer by measuring the absorbance of the blank cuvette at this wavelength. You would then see the absorbance reading set to 0.

 

4. Now, you would measure the absorbance of the cuvette containing the leaf extract and record the absorbance in Table 3 in the position corresponding to the wavelength you selected.

 

5. You would repeat steps 3 – 4, changing to a different wavelength each time, until all the wavelengths in Table 3 had been measured. Record absorbance readings in Table 3.

 

6. Watch the following video about using a spectrophotometer from time 0:00 until 4:43.

https://www.youtube.com/watch?v=C-M7EtSuD40

Note that the video uses a tube containing a red liquid, while in our photosynthesis lab, we would use a tube containing leaf extract (which would appear green) as our sample tube and a tube containing alcohol (which would be transparent) as our blank tube.

 

7. Table 3 has been partially filled in for you in the Lab Worksheet. Complete Table 3 by filling in the color of light that corresponds to the grouped wavelengths.

 

8. Answer question 4 by making a Line Graph of the data in Table 3.

 

9. Answer questions 5 and 6 based on your Line Graph

 

10. Answer question 7 based on the results of both Experiment 1 and Experiment 2.

 

BIO 101 Lab 08: Photosynthesis Worksheet

 

Name: __________________________ Section: ______________________

 

Data Analysis and Synthesis Questions:

 

Table 1. pH-indicating dye color

Color before exhaling into beaker Color after exhaling into beaker
   

 

1. Why did the solution in the beaker change color after you exhaled?

 

 

 

 

 

Table 2. Observing Photosynthesis

Tube Color before 1 hour of light exposure Expected Color after 1 hour of light exposure Observed color after 1 hour of light exposure
1

(Elodea + green film)

     
2

(Elodea)

     
3

(no plant)

     

 

2. In this experiment , what is the purpose of the tube without the plant?

 

 

 

 

 

 

3. Explain the color change or lack of color change in the three experimental tubes:

 

a. Tube 1:

 

 

 

 

b. Tube 2:

 

 

 

 

c. Tube 3:.

 

 

 

 

Table 3. Absorbance of Different Wavelengths of Light

Color of Light Wavelength (nm) Absorbance   Color of Light Wavelength (nm) Absorbance
  400 0.58     575 0.09
  425 0.82     600 0.12
  450 0.61     625 0.16
  475 0.44     650 0.23
  500 0.22     675 0.53
  525 0.08     700 0.04
  550 0.06     725 0.05

 

 

 

 

4. Make a Line Graph of the absorbance readings versus the wavelength of light data from Table 3. Be sure to include x-axis and y-axis labels and a chart title.

 

 

 

 

 

 

 

 

 

5. Which wavelength(s) and colors of light are most effectively absorbed by leaf pigments (where are the peaks in your Line Graph)?

 

 

 

 

 

 

6. Which wavelength(s) and colors of light are poorly absorbed (where are the valleys in your Line Graph)?

 

 

 

 

 

 

7. Draw a general conclusion about which color(s) of light are best for plant growth based on your data from both the measurement of absorbance of light in leaf extracts and the observations of CO2 use by Elodea cuttings in different light conditions.

 

 

 

 

 

 

 

 

 

 

BIO 101 Lab 08: Photosynthesis 10

Lab 05: Photosynthesis

 
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"

Biology Experiement Homework2

Biology Experiement Homework2. Transcription and Translation – Introduction

Be sure that you have read over our online lecture this unit on DNA and read pp 177 to 181 in your book before starting. DNA can be a complex concept to grasp, and there is a lot of terminology to keep straight. These first two exercises will focus on transcription and translation, the two processes responsible for taking the information embedded in our DNA and using it to create a protein.

There are segments in our DNA called genes that code for the proteins needed to carry out cellular functions. These genes are a sequence of nucleotides; adenine (A), thymine (T), cytosine (C) and guanine (G) and the specific sequence of these nucleotides is what conveys the information needed to produce a given protein. In humans, the smallest gene is 252 nucleotides long, whereas the largest is more than 2 million nucleotides long! The genetic code is used to decipher the sequence of nucleotides into a sequence of amino acids. The code uses a series of three-nucleotide sequences called codons. Each different codon codes for an amino acid and it is this specific sequence of amino acids that determines what protein is formed.

DNA is found in our nucleus, yet our proteins are synthesized in the cytoplasm. A gene must first be transcribed into a form that can leave the nucleus. Transcription is the process in which a sequence of DNA used to synthesize a complementary strand of messenger RNA (mRNA). This mRNA acts a template and is used to translate the original DNA sequence into a protein, based on the information in its codons and the Genetic Code.

For example, the DNA sequence ATG-CGT-TAG-CGT-ATTC would be transcribed into the mRNA sequence UAC-GCA-AUC-GCA-UAA. Then, using Fig 10.11 on p 180 in your book, you can determine that this mRNA would be translated into the amino acid sequence Tyrosine-Alanine-Isoleucine-Alanine-Stop.

In Exercise 1, you will have the opportunity to demonstrate your understanding of transcription and translation. You will be using the following website; be sure that you are able to access and use the site:

University of Utah. No date. Transcription and Translation

http://learn.genetics.utah.edu/content/molecules/transcribe/ (Links to an external site.)

In Exercise 2, you will apply what you learned in Exercise 1 and evaluate the effect that different types of mutations have on the outcome of transcription and translation. You’ll want to review these mutations on pp 186-187 of your book and in our online lecture on DNA before starting. You will be using the following website; be sure that you are able to access and use the site:

McGraw Hill. No date. Virtual Lab: DNA and Genes

http://www.glencoe.com/sites/common_assets/advanced_placement/mader10e/virtual_labs_2K8/labs/BL_04/index.html  (Links to an external site.)

Finally, in Exercise 3, you will complete a series of calculations to determine the probability of a mutation occurring within a gene that results in a change in protein structure.

UNIT 5 EXPERIMENT ANSWER SHEET Please submit to the UNIT 5 Experiment SUBMISSION LINK no later than Sunday midnight.

SUMMARY OF ACTIVITIES FOR UNIT 1 EXPERIMENT ASSIGNMENT

· Experiment 5 Exercise 1 – Transcription and Translation

· Experiment 5 Exercise 2 – Translation and Mutations

· Experiment 5 Exercise 3 – Mutation Rates

 

Experiment 5 Exercise 1: Transcription and Translation

This exercise will ensure that you have a good understanding of the processes of transcription and translation. To get started, go to the following website:

University of Utah. No date. Transcription and Translation

http://learn.genetics.utah.edu/content/molecules/transcribe/

 

Procedure

A. Read over the information on the first screen and click on the click here to begin to proceed.

B. On the next screen transcribe the give DNA strand.

Table 1. Transcription of the DNA sequence (1.5 pts).

RNA                                            

 

C. Once you have finished transcribing the DNA, you will then translate the RNA sequence. Follow the instructions on the screen.

Table 2. Translation (1.5 pts)

  Codon Amino Acid
Codon 1    
Codon 2    
Codon 3    
Codon 4    
Codon 5    
Codon 6    

 

 

Experiment 5 Exercise 2: Translation and Mutations

Now that you know how to transcribe DNA and translate the mRNA message, let’s take a look at the different types of mutations that might disrupt this process. Review pp 186-187 in your book before beginning. In this exercise you will need to use the following website:

McGraw Hill. No date. Virtual Lab: DNA and Genes http://www.glencoe.com/sites/common_assets/advanced_placement/mader10e/virtual_labs_2K8/labs/BL_04/index.html

Read over the information in the Mutation Guide and close it when you are done. Note that there are several pages; you will need to click on Next to proceed through the Guide. If you want to review this material, you can click on the Mutation Guide button. You are going to run a series of simulations in which an mRNA sequence and its corresponding amino acid sequence is provided. You will be told what type of mutation you will you apply (= Mutation Rule) and you will have to determine the new, mutated mRNA and the resulting protein sequence.

Procedure

A. Click on the Mutate button to get started.

B. Find the Mutation Rule (lower left corner) and enter it into Table 3 below (see the Example provided).

C. Drag the appropriate nucleotides to build the new, Mutated mRNA sequence. If you make a mistake building the new mRNA sequence, drag the correct nucleotide and place it on top of the incorrect one (you cannot actually remove a nucleotide).

D. Once you have generated your Mutated mRNA sequence, you now need to build your Mutated amino acid sequence by matching the appropriate amino acid with each codon. Click on Genetic Code Chart to see the code or you can use Figure 10.11 on p 160 in your book.

NOTE: If you add a STOP codon, do NOT add any more amino acids after it!

 

E. Once you have finished, click on the Check button. If you are correct, then continue with Step F. If you had errors, you will have to Reset the simulation and start over with Step A. Here is what the results look like for the example provided:

F. When you have been successful, enter the Original mRNA sequence and the Original amino acid sequence in the Table below. Then enter the Mutated mRNA and Mutated protein sequence.

G. Click on Reset and repeat Steps A through F four more times so that you end up with FIVE replicates. Do not reuse the same Mutation Rule and do not use the rule used in the example (“the 4th A becomes a C”). If you get the same Mutation rule twice, Reset the simulation and run again.

Do NOT use the same Mutation rule as shown in the example and do NOT use the same Mutation Rule twice!

Table 3. Mutation rules, mRNA sequences and amino acid sequences (10 pts).

Rep Mutation Rule and Sequences
E

X

A

M

P

L

E

Mutation rule: The 4th A becomes a C
  Original mRNA sequence AUG CAC ACG GUG CGA GGG AGU CUG
  Original amino acid sequence Met (Start) – His – Thr – Val – Arg – Gly – Ser – Leu
  Mutated mRNA sequence AUG CAC ACG GUG CGC GGG AGU CUG
  Mutated amino acid sequence Met (Start) – His – Thr – Val – Arg – Gly – Ser – Leu
  Consequence Substitution appears to have had no effect; Arg Arg
1 Mutation rule:
  Original mRNA sequence  
  Original amino acid sequence  
  Mutated mRNA sequence  
  Mutated amino acid sequence  
  Consequence  
2 Mutation rule:
  Original mRNA sequence  
  Original amino acid sequence  
  Mutated mRNA sequence  
  Mutated amino acid sequence  
  Consequence  
3 Mutation rule:
  Original mRNA sequence  
  Original amino acid sequence  
  Mutated mRNA sequence  
  Mutated amino acid sequence  
  Consequence  
4 Mutation rule:
  Original mRNA sequence  
  Original amino acid sequence  
  Mutated mRNA sequence  
  Mutated amino acid sequence  
  Consequence  
5 Mutation rule:
  Original mRNA sequence  
  Original amino acid sequence  
  Mutated mRNA sequence  
  Mutated amino acid sequence  
  Consequence  

 

Questions

1. What is a silent mutation? Did you see any examples of this in your mutations above? If so, which mutation rule(s) generated it? Cite your sources (2 pts).

 

2. What is a missense mutation and how does it differ from a nonsense mutation? Did you see examples of either of these types of mutation and if so, which mutation rule(s) generated it? Cite your sources (2 pts).

3. What is a frame-shift mutation and why are they so damaging? Did you see any examples of this in your mutations above? If so, which mutation rule(s) generated it? Cite your sources (2 pts).

 

4. Find a genetic disorder that develops as a result of one of the types of genetic mutations we have examined in this exercise. Identify the disorder and briefly describe the mutation responsible. Cite your sources (3 pts).

 

 

Experiment 5 Exercise 3: Mutation Rates

We learned in our second exercise that not all mutations have an observable effect. Yet the risk of a mutation being damaging is fairly significant, so it is important to understand the probability of them occurring. In this exercise, we are going to calculate the probability of a mutational event within a gene. You are given the necessary information below to complete the calculations. Do not let them overwhelm you; this is simple math, so think things through.

Assume that:

· there are approximately 3,000,000,000 base pairs in the mammalian genome (genes constitute only a small portion of this total)

· there are approximately 10,000 genes in the mammalian genome

· a single gene averages about 10,000 base pairs in size

 

Questions

1. Based on the assumptions above, in the mammalian genome, how many total base pairs are in all the mammalian genes? Show your math (2 pts).

2. What percentage (%) of the total genome does this represent? Show your math (2 pts).

 

3. What is the chance (%) that a random mutation will occur in any given gene? Show your math (2 pts).

 

4. Only 1 out of 3 mutations that occur in a gene result in a change to the protein structure. What is the probability that a random mutation will change the structure of a protein? Show your math (2 pts).

 

UNIT 1 Experiment Grading Rubric

Component Expectation Points
Experiment 5 Exercise 1 Demonstrates an understanding of the process of transcription and translation (Table 1 and 2). 3 pts
Experiment 5 Exercise 2 Correctly implements the proper mutation and transcribes the mRNA correctly (Table 3). 10 pts
  Demonstrates an understanding of the different types of mutations and their consequences (Questions 1-4). 9 pts
Experiment 5 Exercise 3 Correctly calculates the necessary information (Questions 1-4). 8 pts
TOTAL   30 pts

 

 

 

1. Explain the four roles that DNA plays in cells? How are these roles influenced by DNA’s structure? Be sure you demonstrate your understanding of DNA’s structure in your answer.

 

Citation(s):

 

2. Match the terms with the most suitable description.     _____ genetic code             a.  Examples of RNA processing     _____ promoter                   b. Sequence of three nucleotides that code for an amino acid.     _____ exon                          c. Location on DNA where RNA polymerase attaches.     _____ intron                        d. Sequence of three nucleotides that is complementary to a codon triplet.     _____ anticodon                  e. Portion of a gene that is excised from the RNA transcript.      _____ codon                        f.  Rules that convert a nucleotide sequence into a protein.     _____ cap and tail               g. Parts of a gene that are expressed.

3. Briefly explain the differences among messenger RNA, transfer RNA and ribosomal RNA in terms of the roles they play in transcription and translation and where they are found in the cell.

 

Citation(s):

 

4. Using the genetic code table (Fig 10.11 on p 180), take the following DNA sequence and complete the following. Note that the mRNA is generated from the complementary DNA strand.                                           T A C C C C A T G T A A C A T A C C A C T

Complementary DNA strand _______________________________________________

mRNA strand ___________________________________________________________

Amino acid sequence _____________________________________________________

 

5. Part of the coding sequence of a gene produces an mRNA sequence of  A U G A A G G C U C C U C C A A G C G G C

What is the DNA sequence __________________________________________________

What is the amino acid sequence _____________________________________________

6. Review pp 178-185 in your book and view the following animation. Then complete the following table. You may need to watch it the video more than once to catch the details.

Genome British Columbia. Gene Expression. 2007. Web. 25 July 2016. https://www.youtube.com/watch?v=OEWOZS_JTgk (Links to an external site.) undefined

Question Transcription Translation
What is it, in brief?    
Where does it occur in the cell?    
What is the product?    
Describe how the product is modified to reach its final form.    

Citation(s):

 

Updated April 2015

Biology Experiement Homework2

 
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"

Case 6-1: An Adolescent Couple with HIV

Case 6-1: An Adolescent Couple with HIV. Discussion Post

—Word Count Is Your Discretion for All Questions Except Question 6 750 Words Minimum!!!

—MLA Format

— Cite All Sources

— Due 2pm American/ New York Time

— 2/14/18

**Read Case Study 1 Attached & Answer Question 1**

Case 6-1: An Adolescent Couple with HIV

Question 1: “You are the nurse in the clinic on the day Alexa finds out she has HIV. She remains in the clinic for more than an hour with you while you try to support and console her. You have had formal HIV counseling training, so you apply your skills as you communicate with her. Several weeks later, after Alexia is more composed and has had time to think more about her situation, she drops by the clinic and wants to talk with you on a more personal basis. She needs comforting. What approaches will you use with Alexa? Please explore how to use and apply the nursing ethical competencies to help Alexa. Be specific with your approaches and rationales. You can approach this issue keeping in mind the three key ethical principles of autonomy, beneficience and nonmaleficense as they relate to your nursing interventions.

** Read Case Study 2 Attached & Answer Question 2 **

Question 2: CBRT Case Study Attached. Use article to answer questions below

1. Phosgene exposure causes inflammation and pulmonary edema that is deleterious to the function of the lungs. (a) What are the three physical factors that influence pulmonary ventilation? How would each of these factors be affected by inflammation and edema?

2. After exposure to phosgene gas, the partial pressures of both O2 and CO2 would be altered in the blood and tissues, because the mechanism for moving these gases in and out of the body has been compromised. After severe exposure to phosgene, what would you expect to find if you measured the partial pressure of oxygen (PO2) and carbon dioxide (PCO2) in the alveoli, the blood plasma, and the cells of the tissues?

3. The transport of oxygen and carbon dioxide in the blood is critical for survival. The victims with the most severe symptoms would need mechanical ventilation to overcome the inability of their respiratory systems to maintain normal blood levels of oxygen and carbon dioxide. Phosgene gas would reduce the amount of oxygen available for transport to the tissues. In addition, the metabolic waste product carbon dioxide is transported by three mechanisms back to the alveoli in the blood. Here carbon dioxide crosses the respiratory membrane, driven by a pressure gradient that favors its exit via the lungs during exhalation. By knowing which mechanism transports the most CO2, predict what would happen to the blood pH if the CO2 level dramatically increased?

** Read Below & Answer Question 3**

Question 3: Give a brief description of Botox & briefly describes how it affects the nervous system and action potential conduction. You should have a minimum of 2 academically appropriate resources.

** Read Below & Answer Question 4 I Attached Chapters**

Question 4: Please read Controversy 13 in your text, about Childhood Obesity and Early Chronic Diseases. As with many public health concerns, there is a controversy around personal responsibility and environmental influence. This conflict is further complicated when it involves children. Discuss what individuals, groups, or agencies you think are responsible for addressing childhood obesity? Please propose two to three solutions to address this concern and provide evidence to support your ideas.

** Read Below & Answer Question 5**

Question 5: Please read the following scenario and submit a report with a response to each of the associated questions. Cite sources in APA style.

Mini Case Study of Betsy’s Bones

Betsy is a 72-year-old retired teacher who lives alone. She used to love gardening, but since moving to a condo, doesn’t get much time outside, and spends most of her days reading or talking on the phone. She presents to her doctor complaining of right leg pain and muscle weakness. Her laboratory results showed deficient vitamin D and reduced bone density, and a diet recall included:

• Breakfast: two hard-boiled eggs, 1 whole grapefruit with 1 tsp sugar, 12 oz. black coffee

• Lunch: cucumber sandwich (made with a ½ cup of sliced cucumber, 2 slices white bread, and 1 T mayonnaise), 1 oz. potato chips, 16 oz. unsweetened iced tea

• Dinner: pasta (1 c.) with meatless marinara sauce (1/2 c.), small white roll, 1 glass red wine, fun-size Milky Way.

Betsy is 5’4” and weighs 126# (57kg). She says she loves to cook, but since it’s just her, she usually just prepares something quick and easy. Every Sunday she goes to church and to the grocery store, but otherwise, she doesn’t leave the house much.

1. Estimate how much protein Betsy is getting. How much does she need? Is her intake adequate? What recommendations do you have regarding Betsy’s protein intake?

2. What about Betsy’ fluid intake? Is she getting enough water? What are potential consequences of not taking in enough fluid?

3. Her doctor recommended a vitamin D supplement. What other ways can Betsy improve her vitamin D status? List some foods that are good sources of vitamin D.

4. Betsy’s mom had osteoporosis and she’s concerned about developing it too. What steps can Betsy take to maintain her bone health? Are there specific nutrients other than vitamin D and calcium that are important to bone health?

5. Why is vitamin D deficiency more common in the elderly?

** Read Below & Answer Question 6**

Question 1: You are required to post 750-word summary of a personal response to a attached article (MATERNAL-FETAL CONFLICT). The summary should reflect self-awareness and critical thinking regarding why you chose both the article and the subject matter. Validate your opinion with references to the code of ethics. Articles and references used in researching the topic summary must be cited using proper APA format.

* Provide some background describing it and why it is timely and worth consideration.

* What are the pro and con arguments about the problem? Refer to ethical concepts, theories and principles in your book.

* What is your position on this problem and why? How do you think it could be resolved?

.

** View the Video Below & Answer Question 7**

https://www.youtube.com/watch?v=gE4ef0yQZRU&feature=youtu.be

Question 7: Reflection: After viewing the “Unusual Support Group” material, why is it that infection rates went up AFTER better sanitation? If Polio had infected the human population for centuries and only a small percentage has long-lasting damage, why were we so determined to “fight” this infection and eradicate it?

Case 6-1: An Adolescent Couple with HIV

 
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"

Transgenic Fly Biology Lab

Transgenic Fly Biology Lab. View This

Promega video about reporter genes assays:

https://www.youtube.com/watch?v=xqTudg1WdmY

Youtube video about how to make transgenic flies:

https://www.youtube.com/watch?v=1CJfj1GG_f8

Horizontal Rule

Read This

Transgenic organisms are defined as a genetically modified organisms that contains DNA from two different genomes. A transgenic organism (or knock-in organism) contains a gene which is overexpressed for the purpose of ascertaining the gene function and location.  The method of creating a transgenic organism is the same as creating a knock-out organism.  A plasmid vector must be used for inserting the gene of interest into the genome.  The vector is introduced into the gametic cells of the organism and the experssion is confirmed in the offspring.

Horizontal Rule

Do This

“Make Transgenic Flies” will be completed first then do the “Use Transgenic Flies”.

Copy/past this link into your browser. Click on “Launch Interactive.” Complete the lab and answer the questions on the worksheet. Remember to read all the information.

https://www.biointeractive.org/classroom-resources/transgenic-fly-virtual-lab

Make Transgenic fly lab 1. (1 pt) You must submit a screen shot of your successful mutant flies at the end of the “Make Transgenic fly lab”. This screenshot will be submitted to a Discussion after completing the lab. When submitting the worksheet – please answer: Where you successful in your experiment? What went wrong? 2. (0.5 pts) What gene are you attaching to the period gene to visualize when transcription occurs? Which organism does this gene come from? 3. (0.5 pts) What key molecular “tool” is used to create the construct of per/luc genes that will jump into the Drosophila genome? 4. (0.5 pts) How will we know if the construct has incorporated into the Drosophila genome? 5. (1 pt) Complete part A of Performing a sequence analysis in the “Make Transgeneic lab” to confirm that the correct period gene is incorporated into the plasmid construct. In the BLAST sequence, what color means a good match? What chromosome is period gene found in Drosophila? Testing Transgenic flies 1. (0.5 pts) About what time of the day does the fly have peak luciferase expression? 2. (0.5 pts) Does the Per gene continue to oscillate regardless of external light/dark cues? 3. (0.5 pts) What time did the peak luciferase expression become after the shift in light/dark cycle?

Transgenic Fly Biology Lab

 
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"