BIOLOGY LAB REPORT

BIOLOGY LAB REPORT. hello

i have a biology experiment attached can write for me the introduction, Materials &

Methods and the conclusion

 

Introduction: Defines the subject, the purpose of doing the experiment; includes some background information (usually can be gathered from the experiment’s intro); reader should be able to understand why the experiment was done, what you already know about the experiment, and the specific purpose of the experiment (usually stated in the title). Do not plagiarize your introduction or you will lose points!!! Also, citing is more than copying the work and listing the source! You must cite within the text as well. Your entire introduction cannot be cited!!! You will lose points for intros that don’t have your original thoughts.

 

Materials & Methods: List the main materials used and write in your own words how the experiment is conducted; reader should understand what materials were used, how the materials were used, and what was actually done during the experiment. If the protocol was altered some way in class, you must make the changes in your lab report. Make sure you underline/italicize all microorganisms!!! Methods should be listed step by step vs. paragraph format.

Conclusion:  answer questions at the end of the experiment, then discuss/conclude what your results mean in terms of the experiment and whether you were successful or not. The conclusion should not just state the experiment was successful, but definitive results should be explained here! Your conclusion should explain how the microbes used in the experiment were affected. For example, if the experiment is on gram staining, then your conclusion should state the gram reaction for each organism used. Ex: E.coli was determined to be gram negative, because it did not retain the purple of the primary stain, but retained the pink of the counter stain.

EXPERIMENT

Microscopic Examination

Of Stained Cell Preparations

Learning Objectives

Once you have completed this experiment, you should be familiar with the

1. Theoretical principles of brightfleld microscopy.

2. Component parts of the compound microscope.

3. Use and care of the compound microscope.

4. Practical use of the compound microscope for visualization of cellular morphology from stained slide preparations.

Principle

Microbiology is a science that studies living or​ganisms that are too small to be seen with the naked eye. Needless to say, such a study must in​volve the use of a good compound microscope. Although there are many types and variations, they all fundamentally consist of a two-lens sys​tem, a variable but controllable light source, and mechanical adjustable parts for determining focal length between the lenses and specimen (Figure 4.1).

Components of the Microscope

Stage A fixed platform with an opening in the center allows the passage of light from an illumi​nating source below to the lens system above the stage. This platform provides a surface for the placement of a slide with its specimen over the central opening. In addition to the fixed stage, most microscopes have a mechanical stage that can be moved vertically or horizontally by means of adjustment controls. Less sophisticated micro​scopes have clips on the fixed stage, and the slide must be positioned manually over the central opening.

Illumination The light source is positioned in the base of the instrument. Some microscopes are equipped with a built-in light source to provide direct illumination. Others are provided with a

 

reversible mirror that has one side flat and the other concave. An external light source, such as a lamp, is placed in front of the mirror to direct the light upward into the lens system. The flat side of the mirror is used for artificial light, and the con​cave side for sunlight.

Abbe Condenser This component is found di​rectly under the stage and contains two sets of lenses that collect and concentrate light as it passes upward from the light source into the lens systems. The condenser is equipped with an iris diaphragm, a shutter controlled by a lever that is used to regulate the amount of light entering the lens system.

Body Tube Above the stage and attached to the arm of the microscope is the body tube. This structure houses the lens system that magnifies the specimen. The upper end of the tube contains the ocular or eyepiece lens. The lower portion consists of a movable nosepiece containing the objective lenses. Rotation of the nosepiece po​sitions objectives above the stage opening. The body tube may be raised or lowered with the aid of coarse-adjustment and flue-adjustment knobs that are located above or below the stage-depending on the type and make of the instrument.

Theoretical Principles of Microscopy

To use the microscope efficiently and with mini​mal frustration, you should understand the basic principles of microscopy: magnification, resolu​tion, numerical aperture, illumination, and focusing.

Magnification Enlargement, or magnification, of a specimen is the function of a two-lens system; the ocular lens is found in the eyepiece, and the objective lens is situated in a revolving nose​piece. These lenses are separated by the body tube. The objective lens is nearer the specimen and magnifies it, producing the real image that is projected up into the focal plane and then magni​fied by the ocular lens to produce the final image.

image1.png

Ocular

(eyepiece)

lenses

Body tube lock screw

Head-

Arm

Mechanical stage

Coarse-

adjustment knob

Fine-

adjustment knob

Objective lenses

Diaphragm lever Condenser

Iris diaphragm lever

Substage light

Condenser adjustment knob

Light control

Base

Power switch

Figure 4.1 Leica ATC 2000 compound microscope

The most commonly used microscopes are equipped with a revolving nosepiece containing four objective lenses, each possessing a different degree of magnification. When these are com​bined with the magnification of the ocular lens, the total or overall linear magnification of the specimen is obtained. This is shown in Table 4.1.

Resolving Power or Resolution Although mag​nification is important, you must be aware that unlimited enlargement is not possible by merely increasing the magnifying power of the lenses or by using additional lenses, because lenses are limited by a property called resolving power. By definition, resolving power is how far apart two adjacent objects must be before a given lens shows them as discrete entities. When a lens

cannot discriminate, that is, when the two ob​jects appear as one, it has lost resolution. In​creased magnification will not rectify the loss and will, in fact, blur the object. The resolving power of a lens is dependent on the wavelength of light used and the numerical aperture, which is a characteristic of each lens and imprinted on each objective. The numerical aperture is defined as a function of the diameter of the objective lens in relation to its focal length. It is doubled by use of the substage condenser, which illuminates the ob​ject with rays of light that pass through the speci​men obliquely as well as directly. Thus, resolving power is expressed mathematically as follows:

resolving power =

wavelength of light

2 x numerical aperture

Overall Linear Magnification

MAGNIFICATION

TOTAL MAGNIFICATION

OCULAR LENS

OBJECTIVE LENSES

OBJECTIVE MULTIPLIED BY OCULAR

40x 100x 400x 1000X

Scanning 4x Low-power 10x High-power 40X Oil-immersion 100x

10x 10X 10X 10X

Based on this formula, the shorter the wave​length, the greater the resolving power of the lens. Thus, for the same numerical aperture, short wavelengths of the electromagnetic spec​trum are better suited for higher resolution than are longer wavelengths.

However, as with magnification, resolving power also has limits. You might rationalize that merely decreasing the wavelength will automati​cally increase the resolving power of a lens. Such is not the case, because the visible portion of the electromagnetic spectrum is very narrow and borders on the very short wavelengths found in the ultraviolet portion of the spectrum.

The relationship between wavelength and numerical aperture is valid only for increased re​solving power when light rays are parallel. There​fore, the resolving power is also dependent on another factor, the refractive index. This is the bending power of light passing through air from the glass slide to the objective lens. The refrac​tive index of air is lower than that of glass; as light rays pass from the glass slide into the air, they are bent or refracted so that they do not pass into the objective lens. This would cause a loss of light, which would reduce the numerical aperture and diminish the resolving power of the objective lens. Loss of refracted light can be compensated for by interposing mineral oil, which has the same refractive index as glass, be​tween the slide and the objective lens. In this way, decreased light refraction occurs and more light rays enter directly into the objective lens, producing a vivid image with high resolution (Figure 4.2).

Illumination Effective illumination is required for efficient magnification and resolving power. Since the intensity of daylight is an uncontrolled variable, artificial light from a tungsten lamp is

the most commonly used light source in mi​croscopy. The light is passed through the con​denser located beneath the stage. The condenser contains two lenses that are necessary to produce a maximum numerical aperture. The height of the condenser can be adjusted with the condenser knob. Always keep the condenser close to the stage, especially when using the oil-immersion objective.

image2.png

Objective lens

Refracted (lost)

Slide —[

Condenser

Light source

Figure 4.2 Refractive index in air and in mineral oil

Between the light source and the condenser is the iris diaphragm, which can be opened and closed by means of a lever, thereby regulating the

amount of light entering the condenser. Exces-

sive illumination may actually obscure the speci​men because of lack of contrast. The amount of light entering the microscope differs with each objective lens used. A rule of thumb is that as the magnification of the lens increases, the distance between the objective lens and slide, called working distance, decreases, whereas the nu​merical aperture of the objective lens increases

(Figure 4.3).

Use and Care of the Microscope

You will be responsible for the proper care and use of microscopes. Since microscopes are ex​pensive, you must observe the following regula​tions and procedures.

The instruments are housed in special cabi​nets and must be moved by users to their laboratory benches. The correct and only acceptable way to do this is to grip the microscope arm firmly with the right hand and the base with the left hand, and lift the instrument from the cabinet shelf. Carry it close to the body and gently place it on the laboratory bench. This will prevent colli​sion with furniture or coworkers and will protect the instrument against damage.

Once the microscope is placed on the labora​tory bench, observe the following rules:

1. Remove all unnecessary materials (such as books, papers, purses, and hats) from the lab​oratory bench.

2. Uncoil the microscope’s electric cord and plug it into an electrical outlet.

3. Clean all lens systems; the smallest bit of dust, oil, lint, or eyelash will decrease the efficiency of the microscope. The ocular, scanning, low-power, and high-power lenses may be cleaned by wiping several times with acceptable lens tissue. Never use paper toweling or cloth on a lens surface. If the oil-immersion lens is gummy or tacky, a piece of lens paper moistened with xylol is used to wipe it clean. The xylol is immedi​ately removed with a tissue moistened with 95% alcohol, and the lens is wiped dry with lens paper. Note: This xylol cleansing pro​cedure should be performed only by the in​structor and only if necessary; consistent use of xylol may loosen the lens.

The following routine procedures must be followed to ensure correct and efficient use of the microscope.

1. Place the microscope slide with the specimen within the stage clips on the fixed stage. Move the slide to center the specimen over the opening in the stage directly over the light source.

2. Raise the microscope stage up as far as it will go. Rotate the scanning lens or low-power lens into position. Lower the body tube with the coarse-adjustment knob to its lowest po​sition. Note: Never lower the body tube while looking through the ocular lens.

3. While looking through the ocular lens, use the fine-adjustment knob, rotating it back and forth slightly, to bring the specimen into sharp focus.

4. Adjust the substage condenser to achieve op​timal focus.

5. Routinely adjust the light source by means of the light-source transformer setting, and/or the iris diaphragm, for optimum illumination for each new slide and for each change in magnification.

6. Most microscopes are parfocal, which means that when one lens is in focus, other lenses will also have the same focal length and can be rotated into position without fur​ther major adjustment. In practice, however, usually a half-turn of the fine-adjustment knob in either direction is necessary for sharp focus.

7. Once you have brought the specimen into sharp focus with a low-powered lens, prepa​ration may be made for visualizing the speci​men under oil immersion. Place a drop of oil on the slide directly over the area to be viewed. Rotate the nosepiece until the oil-immersion objective locks into position. Note: Care should be taken not to allow the high-power objective to touch the drop of oil. The slide is observed from the side as the objective is ro​tated slowly into position. This will ensure that the objective will be properly immersed in the oil. The fine-adjustment knob is read​justed to bring the image into sharp focus.

8. During microscopic examination of microbial organisms, it is always necessary to observe several areas of the preparation. This is ac​complished by scanning the slide without the application of additional immersion oil. Note: This will require continuous, very fine ad​justments by the slow, back-and-forth rota​tion of the fine-adjustment knob only.

Diaphragm Opening

Objective

Working Distance

image3.png

image4.png

image5.png

Scanning 4x

4x

Reduced

9-10 mm

Slide

image6.png

image7.png

image8.png

Low power 10x

10x

Not fully opened

5-8 mm

Slide

image9.png

image10.png

image11.png

High power 40x

40x

Not fully

opened

0.5-0.7 mm

J

Slide

image12.png

image13.png

image14.png

Oil immersion 100x

100x

Fully opened

0.13-0.18 mm

Slide

Figure 4.3 Relationship between working distance, objective, and

Diaphragm opening

On completion of the laboratory exercise, re​turn the microscope to its cabinet in its original condition. The following steps are recommended:

1. Clean all lenses with dry, clean lens paper. Note: Use xylol to remove oil from the stage only.

2. Place the low-power objective in position and lower the body tube completely.

3. Center the mechanical stage.

4. Coil the electric cord around the body tube and the stage.

5. Carry the microscope to its position in its cabinet in the manner previously described.

AT THE BENCH

Materials

Slides

Commercially prepared slides of Staphylococcus aureus, Bacillus subtilis, Aquaspirillum iter-sonii, Saccharomyces cerevisiae, and a human blood smear.

Equipment

Compound microscope, lens paper, and immer​sion oil.

Procedure

1. Review the parts of the microscope, making sure you know the names and understand the function of each of these components.

2. Review instructions for the use of the micro​scope, giving special attention to the use of the oil-immersion objective.

3. Examine the prepared slides, noting the shapes and the relative sizes of the cells un​der the high-power (also called high-dry, be​cause it is the highest power that does not use oil) and oil-immersion objectives.

4. Record your observations in the Lab Report.

Observations and Results

Draw several cells from a typical microscopic field as viewed under each mag​nification, and give the total magnification for each objective.

Lab Report

High Power

Oil Immersion

S. aureus

image15.png

image16.png

Magnification

B. subtilis

image17.png

image18.png

Magnification

A. itersonii

image19.png

image20.png

Magnification

S. cerevisiae

image21.png

image22.png

Magnification

Blood smear

image23.png

image24.png

Magnification

Review Questions

1. Explain why the body tube of the microscope should not be lowered while you are looking through the ocular lens.

2. For what purpose would you adjust each of the following microscope components during a microscopy exercise?

a. Iris diaphragm:

b. Coarse-adjustment knob:

c. Fine-adjustment knob:

d. Condenser:

e. Mechanical stage control:

3. As a beginning student in the microbiology laboratory, you experience some difficulties in using the oil-immersion lens. Describe the steps you would take to correct the following problems:

a. Inability to bring the specimen into sharp focus.

b. Insufficient light while viewing the specimen.

c. Artifacts in the microscopic field.

BIOLOGY LAB REPORT

 
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"

Investigating tornadoes

Investigating tornadoes. For this lab we will be investigating tornadoes; how, when, and where they form!

At the end of the lab you should hand in the completed “SevereActivity” as well as the answers to the questions listed throughout this assignment.

Part I Thunderstorm & Tornado Formation

A tornado is a fast rotating column of air that touches the ground at the bottom and a storm cloud at the top. The first step to forming a tornado is:

1. Create a thunderstorm

Thunderstorms are when warm air rises and condenses, forming a cloud. The three necessary ingredients for forming a thunderstorm are

Lift – This is something that makes the air rise and could be surface heating, a cold front or dry line, or even a mountain.

Instability – When the atmosphere is unstable, air that is lifted continues to rise. Just like a hot air balloon.

Moisture – Moisture is the fuel for the storm and is needed to form the clouds and precipitation.

This video describes the ingredients for thunderstorms:

https://www.youtube.com/watch?v=6UyPr6kt7Jg (Links to an external site.)

2. Make the storm long lasting

In order for a storm to last longer we often need a continued source of lift. This source of lift is often a

Boundary – The transition zone between two types of air. A cold front is the boundary between cold air and warm air, while a dry line is a boundary between moist air and dry air.

3. Create rotation in the storm

To get rotation in the storm you need

Shear – Also known as wind shear this is a change in wind with height in the atmosphere. The shear can either be in the speed of the wind or the direction of the wind, but usually both are present when a tornado forms.

The wind shear creates horizontal rotation in the storm

4. Tilt rotation into the vertical

Next the storm updraft (rising air) tilts the horizontal rotation into a vertical direction. We now have what we call a mesocyclone. A mesocyclone is when there is a big slow rotation in a storm, and is indicative of supercell thunderstorms. Mesocyclones are needed to form tornadoes, but not all thunderstorms with mesocyclones produce tornadoes.

5. Stretch and squish the rotation

Now comes what I like to call the “figure skater effect.” The slow mesocylone becomes smaller underneath the storm which makes it speed up, just like a figure skater pulling in their arms. This stretching or squishing usually is caused by the up- and downdrafts of the storm.

This video describes more about the needed conditions and some of what we still don’t know about tornadoes:

https://www.youtube.com/watch?v=BMLZpjRYK9Q

So in summary LIMBS (lift, instability, moisture, boundary, and shear) is needed to form supercells, mesocyclones, and tornadoes, but it doesn’t guarantee that a tornado will form.

Questions 1: Describe in your own words how tornadoes form.

Part II: Tornado Climatology

Tornadoes are primarily a U.S. phenomena. In this section we will explore where and when tornadoes occur. Watch this short video that describes why we get so many tornadoes in the U.S.:

https://www.youtube.com/watch?v=0yiZveJAEp4

This link shows a map of tornado track in the U.S.:

http://uxblog.idvsolutions.com/2012/05/tornado-tracks.html

Question 2: Where are there very few tornadoes? From what you have learned, why do you think this is?

This link shows a similar map, but broken down by the time of year:

http://uxblog.idvsolutions.com/2012/06/seasonal-tornado-habitats-1950-2011.html

This link shows the occurrence of tornado by month and day of year:

http://www.ustornadoes.com/2012/03/14/total-u-s-tornadoes-by-month-and-by-day/

Question 3: Describe how the locations of tornadoes changes throughout the year.

Question 4: Why do you think we see these changes?

Part III: Tornado Forecasting

This page gives a brief description of tornado forecasting, including the products that severe weather forecasts put out to inform the public about the risks and likelihood of severe weather and tornadoes:

http://www.noaa.gov/features/protecting_0808/tornadoes.html

You will now be using weather data to forecast tornadoes. Complete the following activity and scan or photograph it to hand in, along with the other questions in this lab:

SevereActivity.docx

After you have completed the activity, look at the maps below.

This map shows the severe weather forecast from the storm prediction center on April 6, 2003:

day1otlk_20030406_1200_prt.gif

This map shows the actual reports of severe weather on April 6, 2003:

030406_rpts.gif

Questions 5: How well were you able to predict severe weather using the data in the activity? How close were you to identifying the areas that actually had severe weather?

Investigating tornadoes

 
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"

Biology homewoke

Biology homewoke.

Name: _________________________________________________________

Answer the following questions for Report Assignment #2

Assigment Due in lab the week of Presentations

APA Citation Activity

Instructions

If you are unfamiliar with APA citation styles, you may find it helpful to review the material inside the “Citing sources using APA citation style” folder before beginning this assessment.

Question 1

Choose the citation that is in proper APA citation format for a book.

a. Jenkins, Henry. Fans, bloggers, and gamers: exploring participatory cultures. New York: New York University Press, 2006.

b. Jenkins, H. Fans, bloggers, and gamers: exploring participatory cultures. New York University Press, New York. 2006.

c. Jenkins, H. (2006). Fans, bloggers, and gamers: exploring participatory culture. New York: New York University Press.

d. Jenkins, Henry. (2006). Fans, Bloggers, and Gamers: Exploring Participatory Culture. New York UP: New York.

Question 2

Choose the citation that is in proper APA citation for a chapter from a book (no named author of chapter).

a. Cook, V.J.(2004). “Flava’N Gorillaz: Pop Group Names.” In Accomodating Brocolli in the Cemetary, (pp. 21-22). Simon and Schuster: New York.

b. Flava ‘n Gorillaz: Pop group names. (2004). In V.J. Cook, Accomodating Brocolli in the Cemetary (pp. 21-22). New York: Simon and Schuster.

c. Flava ‘n Gorillaz: Pop group names. In Cook, V.J. Accomodating Brocolli in the Cemetary (pp. 21-22). New York: Simon and Schuster, 2004.

d. V.J. Cook. 2004. “Flava’n Gorillaz: Pop group names.” In Accomodating Brocolli in the Cemetary, pp. 21-22. Simon and Schuster: New York.

Question 3 Choose the correct APA citation for a newspaper article.

a. Yonke, D. (2008, September 13). Monks on the road for peace: Tibetan Buddhists bring message that ‘happiness is an internal event’. The Blade (Toledo, OH), p. B7.

b. Yonke, David. (2008). “Monks on the road for peace: Tibetan Buddhists bring message that ‘happiness is an internal event’.” The Blade (Toledo, OH), pp. B7.

c. Yonke, David. Monks on the road for peace: Tibetan Buddhists bring message that ‘happiness is an internal event’. The Blade, September 13, 2008. p. B7.

d. Yonke, David. “Monks on the road for peace: Tibetan Buddhists bring message that ‘happiness is an internal event’.” The Blade 13 Sept. 2008: B7.

Question 4

Choose the correct APA citation for an article from a library research database.

a. Weickgenannt, Nicole. (2008). The Nation’s Monstrous Women: Wives, Widows and Witches in Salman Rushdie’s Midnight’s Children. In Journal of Commonwealth Literature. 43.2, pp. 65-83. Retrieved October 31, 2008, from Humanities International Complete http:// 0-search.ebscohost.com.maurice.bgsu.edu/ login.aspx?direct=true&db=hlh&AN=32541323&loginpage=login.asp&site=ehost-live&scope=site

b. Weickgenannt, Nicole. “The nation’s monstrous women: Wives, widows and witches in Salman Rushdie’s Midnight’s Children.” Journal of Commonwealth Literature 43.2 (June 2008): 65-83. Humanities International Complete. EBSCO. Bowling Green State University Libraries, Bowling Green, Oh.. 31 Oct. 2008 <http:// 0-search.ebscohost.com.maurice.bgsu.edu/ login.aspx?direct=true&db=hlh&AN=32541323&loginpage=login.asp&site=ehost-live&scope=site>.

c. Weickgenannt, N. The Nation’s Monstrous Women: Wives, Widows and Witches in Salman Rushdie’s Midnight’s Children. Journal of Commonwealth Literature. 43.2: pp.65-83. Retrieved October 31, 2008, from Humanities International Complete. (2008, June).

d. Weickgenannt, N. (2008, June). The nation’s monstrous women: Wives, widows and witches in Salman Rushdie’s Midnight’s Children. Journal of Commonwealth Literature, 43(2), 65-83. Retrieved October 31, 2008, from Humanities International Complete.

Question 5

Create an APA citation for this publication:

Article Title: Truly, Madly, Depp-ly

Author: Frank DeCaro

Publication: Advocate

Volume number: 906

Date: January 20, 2004

Pages: 76-77

Source: Gender Studies Database

Date of access: October 31, 2008

hyperlink: <http://0-search.ebscohost.com.maurice.bgsu.edu/ login.aspx?direct=true&db=fmh&AN=GSD0048

How to write an Introduction

An introduction contains: 1. Background information on the topic investigated. 2. The proposed hypothesis. and 3. A short description of the methods testing the hypothesis. 4. Citations are included in the introduction and must be in APA format (within the body of the text include the author(s) last name and year of the citation…do not use page numbers or quotations from sources). Please do not use formats common to other disciplines. Do not use quotations within the body of the report text (Quotations are not used in scientific reports. You should state the information in your own words and include the citation that contained the information at the end of the sentence). You are not required to write a report introduction. Instead answer the following questions to illustrate the components of an introduction.

For the each section answer the following questions assume the hypothesis for the Stomata experiment is: The distribution of stomata is related to the location of the leaf on the plant (inside versus outside).

6. What information would a reader need to know about Stomata to understand the independent variable and how it is related to the hypothesis? (list at least 3 facts that would be required to understand why the independent variable for the experiment is stomata distribution).

7. Give one supporting fact to justify that the distribution of stomata is affected by the location of leaves on plants (to receive credit you must provide a scientific citation from a peer review source to support the fact).

Developed by Amy Fyn, Bowling Green State University Libraries, 2008, for LIB225: Information Seeking and Management in Contemporary Society

Biology homewoke

 
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"

LAB 2 : HUMAN GENETICS

LAB 2 : HUMAN GENETICS. 1

 

 

 

BIOLOGY102: BIOLOGY, HEALTH AND ENVIIRONMENT LABORATORY

LAB 2 : HUMAN GENETICS

 

Laboratory Exercises:

1) Read background and introductory information on human genetics (inheritance of specific traits, mutations, pedigrees etc).

2) Produce the phenotype and genotype of a unique offspring

3) Record offspring’s genotype

 

Objectives:

Upon completion of today laboratory exercises, a student should be able to:

  • demonstrate an adequate understanding of the variations in human traits
  • describe different human traits and their inheritance from parents to offspring
  • analyze and create human pedigrees
  • characterize different human traits and how they are inherited
  • investigate and produce human pedigrees
  • identify human genetic diseases and how they are inherited
  • comprehend the aim of the Human Genome Project (HPG) and the advantages of genetic data bases

 

 

Background and Introduction:

Inheritance of individual traits in humans has remained a subject of fascination. Humans and other species carry the genes our parents and our grandparents, and during reproduction, these traits are transmitted to our own offspring. At family reunions, it is often fascinating to postulate where Suzi got her red hair and Danny her brown eyes.

A mishap, or mutation in the DNA sequence of a gene can lead to a phenotypical variation in the individual. In some instances, these variations are beneficial, but often these mutations are deleterious, resulting in an organism that is incapable of surviving in its environment, or with genetic disorder. Pedigrees or family histories can be used to trace the presence of a specific defective gene, and the consequent of transmission genetic disorder from parent to offspring.

The entire human genome (all human genes) has been sequenced by scientists and is stored in a data bank for future scientific reference. The sequenced human genome will enable scientists to determine with a high degree of accuracy, defects in an individual’s genetic composition. Detection of such genetic disorders may result in discovery of treatment for many diseases. Although the sequencing of the human genome has many beneficial scientific applications, it is still shrouded with many ethic issues. Accessibility to the stored information in the human genome data bank, control over how and when such information can be used, and use of such information in characterizing individuals as “normal ” and “abnormal”, remain serious issues of concern and public debate.

 

 

 

 

Inheritance of Human Genetic Characteristics

 

Genetic Variation

 

Differences in physical appearance of related individuals are due to variations in genotypes and consequently phenotypes. These variations are also evident in siblings from same parents and twins. However, identical twins will not exhibit such variations. Genotypes (genetic makeup of an individual) are responsible for specific inherited traits. These inherited traits are physically expressed as phenotypes. A pair of gene alleles is responsible for any phenotype expressed, and they transmitted from parents to offspring (Mendelian Law of segregation). In some instances, inherited traits are carried on different chromosomes (rod shaped bodies containing hereditary units or genes). In such cases, the inheritance of one trait is not dependent on the inheritance of another (Mendelian Law of Independent Assortment).

 

 

EXERCISE 1: Visualizing Human Genetic Variation (“Making Your Own Baby”)

 

Materials Needed:

Coin

Characteristics Visualization Handout

 

To demonstrate the incredible variation with the human genome, each student will create the genotype and phenotype of a unique baby (offspring). The pair of alleles responsible for each trait that you will transmit to your baby through your gametes (sex cells) will be randomly selected through coin tossing. For this exercise, you will assume that both parents are heterozygous (have pair of genes with contrasting characters on the chromosome) for each trait. You will record their baby’s (offspring) genotype, and pictorially demonstrate the phenotype. You will use the Visualization Handout provided to help you draw the picture.

 

  • First, choose the gender of your baby. Female = XX, Male = XY. The father’s chromosomes (XY) determine the gender of the baby because an offspring either receives an X or Y chromosomes from the father. On the other hand, the baby will always receive an X chromosome from the mother. For this reason, only one coin toss is needed to determine the sex of the baby. If the coin toss results in a head, the baby receives a Y chromosome from the father, and if a tail, the baby receives an X chromosome.

 

  • On the data sheet (Table 14.1) record your name and the gender of your baby. Then select a name for your baby and record it.

 

  • Now that the gender has been selected, determine the other inherited traits using the illustrations below. For this part of the exercise, you will toss the coin twice (for both the mother & father) to determine which form of their genes will be received by the baby. Note: all parents are heterozygous for traits in this exercise. Coin tosses resulting in heads signify a dominant allele, while tails signify recessive alleles. In situations where the traits exhibit incomplete dominance, a heterozygous baby will demonstrate a new phenotype.

 

  • For each trait, record on your Data Table the genes received from the mother, the genes received from the father, and the resulting genotype of the baby. Additionally, describe the baby’s phenotype.

 

 

 

 

Notes on Polygenic Inheritance

 

Hair Color: Parents are Both AaBbCcDd

 

Hair color is produced by several different genes (polygenic). Suppose that there are 4 genes involved. Therefore, it will take 8 tosses of the coin, representing four for each parent to determine the genotype. The phenotype is determined by the number of dominants as outlined below.

 

8 dominants = black 3 dominants = dark blond

7 dominants = very dark brown 2 dominants = blond

6 dominants = dark brown 1 dominant = light blond

5 dominants = brown 0 dominants = almost white

4 dominants = light brown

 

Eye Color : Parents are Both BbCc

 

Assume two genes for hair color. Therefore, you will toss the coin 4 times, representing two for each parent. The first toss determines the pigment for the front of the iris (represented by B’s) and the second for the pigment behind the iris (represented by C’s). This will be completed twice.

 

BBCC = dark brown BbCC = hazel

BbCc =light brown BBCc = blue gray

Bbcc = light blue bbCC = green

BBcc = dark blue bbCc = light green

bbcc = blue green

 

 

 

 

Name: ____________________________ Lab Day and Time_______________________

 

Parent Name: ___________________________

 

Child’s Name: ___________________ Child’s sex: __________ (heads = boy, tails = girl)

 

Tails-lowercase letters Heads-Capital letters

 

#

Trait

Gene(s) from Mother

Gene(s) from Father

Baby’s Genotype

Baby’s Phenotype

1

Widow’s Peak

W=peak w=no peak

 

 

 

 

2

Eyebrows

E=bushy e=thin

 

 

 

 

3

Eyelashes

Y=long y=short

 

 

 

 

4

Lips

L=full l=thin

 

 

 

 

5

Dimples

D=dimples

d=no dimples

 

 

 

 

6

Nose Shape

N=round n=pointy

 

 

 

 

7

Freckles

F=freckles

f=no freckles

 

 

 

 

8

Face Shape

S=round s=square

 

 

 

 

9

 

Earlobe Attachment

A=attached

a=not attached

 

 

 

 

10

Hair Type

H=curly h=straight

 

 

 

 

11

Eye Size

B=big b=small

 

 

 

 

12

Mouth Length

M=long m=short

 

 

 

 

13

Nose Size

C=big c=small

 

 

 

 

14

Hair Color

See the previous page

 

 

 

 

15

Eye Color

See the previous page

LAB 2 : HUMAN GENETICS

 
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"