Cell Organelles Worksheet

Cell Organelles Worksheet.

Name:

Date:

Cell Organelles Worksheet

Complete the following table by writing the name of the cell part or organelle in the right hand column that matches the structure/function in the left hand column. A cell part may be used more than once.

Structure/Function Cell Part
1. Stores material within the cell  
2. Closely stacked, flattened sacs (plants only)  
3. The sites of protein synthesis  
4. Transports materials within the cell  
5. The region inside the cell except for the nucleus  
6. Organelle that manages or controls all the cell functions in a eukaryotic cell  
7. Contains chlorophyll, a green pigment that traps energy from sunlight and gives plants their green color  
8. Digests excess or worn-out cell parts, food particles and invading viruses or bacteria  
9. Small bumps located on portions of the endoplasmic reticulum  
10. Provides temporary storage of food, enzymes and waste products  
11. Firm, protective structure that gives the cell its shape in plants, fungi, most bacteria and some protests  
12. Produces a usable form of energy for the cell  
13. Packages proteins for transport out of the cell  
14. Everything inside the cell including the nucleus  
15. Site where ribosomes are made  
16. The membrane surrounding the cell  
17. Provides support for the cell, has two “subparts”  
18. Name for the collection of DNA in the nucleus of eukaryotic cells  
19. Consist of hollow tubes which provide support for the cell  
20. Small hair-like structures used for movement or sensing things  
21. Composed of a phospholipid bilayer  
22. Longer whip-like structures used for movement  

Put a check in the appropriate column(s) to indicate whether the following organelles are found in plant cells, animal cells or both.

Organelle Plant Cells Animal Cells
Cell Wall    
Vesicle    
Chloroplast    
Chromatin    
Cytoplasm    
Cytoskeleton    
Endoplasmic reticulum    
Golgi apparatus    
Lysosome    
Mitochondria    
Nucleolus    
Nucleus    
Plasma membrane    
Central vacuole    
Ribosome    
Vacuole    

WS – Cell Organelles.doc

Page 2

Cell Organelles Worksheet

 
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"

Micro HW 4

Micro HW 4. Question 1

Future drugs and vaccines for the use against Ebola

 

Pick an experimental drug, vaccine or other treatment that is being considered in the fight against Ebola. http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/qa-experimental-treatments.html

 

Write a response to the following discussion question in the Discussion forum:

 

How exactly does the experimental treatment you have chosen work?

Provide a brief history of where we are now with the potential treatment.

How is it produced?

When do the developers of the treatment believe they will be able to begin experimental treatments?

Initial answers to the discussion question must be substantive and in the range of 350–500 words. Any references used should be properly cited following APA formatting guidelines.

 

Question 2

CDC’s New Superbug: CRE

 

CRE, which stands for Carbapenem-resistant Enterobacteriaceae, are a part of Enterobacteriaceae that are difficult to treat because they are resistant to commonly used antibiotics. Occasionally CRE are completely resistant to all available antibiotics. CRE have become a nightmare to infection control in health care facilities. http://www.usatoday.com/story/news/nation/2013/03/05/superbugs-infections-hospitals/1965133/ http://www.cdc.gov/hai/organisms/cre/

 

Write a response to the following discussion question in the Discussion forum:

 

Describe one of the new superbugs such as CRE, MRSA, Clostridium difficile, etc. that are causing havoc in our health care facilities.

What strategies are being employed to combat these new threats to our public health?

Initial answers to the discussion question must be substantive and in the range of 350–500 words. Any references used should be properly cited following APA formatting guidelines.

 

Question 3

2nd New Hampshire resident dies of Eastern Equine Encephalitis (EEE)

 

New Hampshire public health officials say a Manchester [Hillsborough County] resident is the 2nd person to die from eastern equine encephalitis (EEE) virus infection this season, summer and fall 2014. Public Health Director Dr. Jose Montero says the individual was exposed to the virus at the end of August and died in mid-September 2014. He says testing was complicated, and the virus was not confirmed until after the patient died. In the 1st fatal case, someone who became sick in the Conway, Carroll County, area in August died last month September 2014. A 3rd person also has been diagnosed with EEE, which is spread by the bite of infected mosquitoes and can lead to seizures and coma. Symptoms can include high fever, severe headache, stiff neck, and sore throat. These cases in New Hampshire are not surprising since they occurred within the geographical range of EEE virus in the eastern USA, where human and equine cases occur sporadically. As is usual, there are many more equine than human cases. There have been recent human cases in New Hampshire and an equine case involving a mule. The virus is maintained in passerine birds and transmitted among them by the black-tailed mosquito, Culiseta melanura. The species occasionally feeds on mammals and may have been the bridge transmitter in the above case. Clinical cases in humans are very serious, with a case fatality rate of 33 per cent and significant neurological sequelae in survivors. It is prudent to follow the recommendations above to avoid mosquito bites, particularly in areas where equine cases have been reported. http://www.cdc.gov/EasternEquineEncephalitis/

 

The first symptoms of EEE are fever (often 103º to 106ºF), stiff neck, headache, and lack of energy. These symptoms show up three to ten days after a bite from an infected mosquito. Inflammation and swelling of the brain, called encephalitis, is the most dangerous and common serious complication. The disease generally worsens quickly, and some patients may go into a coma within a week. People have an important role to play in protecting themselves and their loved ones from illnesses caused by mosquitoes. The group of viruses is known as arthropod borne viruses or Arboviruses and EEE is one of the deadliest.

 

Write a response to the following discussion question in the Discussion forum:

 

Discuss one of the mosquito borne viruses such as there are four main virus agents of encephalitis in the United States: eastern equine encephalitis (EEE), western equine encephalitis (WEE), St. Louis encephalitis (SLE) and La Crosse (LAC) encephalitis, all of which are transmitted by mosquitoes.

What recent outbreaks did you find on the Internet?

What strategies are being employed to combat these threats to our public health?

Initial answers to the discussion question must be substantive and in the range of 350–500 words. Any references used should be properly cited following APA formatting guidelines.

 

Question 4

Hantavirus discovery now 20 years old

 

The New Mexico Health Department confirmed on April 19th 2013 that a 45-year-old McKinley County woman has contracted the 1st case of a hantavirus this year in the state. In 1993, a massive investigation by public health officials from federal, state, and local agencies quickly discovered that a previously unknown hantavirus named Sin Nombre virus was the cause of the illnesses, and the deer mouse Peromyscus maniculatus was mainly responsible for excreting the virus in its droppings and urine. The virus killed 3 Yosemite visitors and sickened 6 more last summer. http://www.kob.com/article/stories/S3010686.shtml?cat=504

 

Write a response to the following discussion question in the Discussion forum:

 

Describe one of the outbreaks over the past 20 years.

What measures were used to prevent transmission of the virus?

Initial answers to the discussion question must be substantive and in the range of 350–500 words. Any references used should be properly cited following APA formatting guidelines.

 

 

 

 

Case study

At the Mount Union hospital, a 5-year old white male child in good general health and physical condition was presented at the Saturday walk-in clinic by his mother. He was brought in because he had a fever, was cranky and had complained of a sore throat for about 24 hours. On physical examination by the attending resident, the patient had a fever of 39.3° C, and he had considerable swelling and drainage of the pharynx and in the conjunctivae. His tonsils were enlarged and coated with a white patchy exudate. He had a red throat and swollen anterior cervical lymph nodes. His ears were clear. His chest sounded clear and he had no additional remarkable findings on routine examination.

Directions: Answer the following questions in your own words.

1. What would be your presumptive diagnosis for this child? Why?

 

 

 

 

 

2. What diagnostic testing would be indicated to follow this exam?

 

 

 

 

 

3. What is the most likely treatment for this illness? Why is it important?

 

 

 

 

 

4. What factors of this case allowed you to make a presumptive diagnosis?

 

 

Any references used should be properly cited following APA formatting guidelines.

 

 

Case study 2

 

A 62-year old diabetic black man presents in the emergency room with a swollen left leg with areas of blanching and blue mottling. A “foul odor” is coming from a dressed wound. The physicians remove the dressing and a brownish fluid is seeping from a wounded area. The fluid contains what appear to be small bits of the tissue. No pus appears to be present. The wound has a strong “rotten” odor.

Five days earlier, while at his work as a farmer, he caught the leg in his manure spreader, sustaining a deep, crushing, grossly dirty injury. His wife cleaned the wound as well as she could with soap and water, dressed it with clean gauze, and wrapped it tightly with an elastic bandage to stop the bleeding. The second day they redressed the wound and applied triple antibiotic ointment. The patient treated his pain with ibuprofen (Advil). He reported the pain was not very bad for the first 72 hours. In the past 24 hours, the leg swelled and the mottling began to appear. A foul odor and severe pain accompanied the swelling. His wife convinced him to come to the emergency room even though they did not have medical insurance.

Directions: Answer the following questions in your own words.

1. What is your diagnosis in this case?

 

 

 

 

 

2. How should this wound be treated?

 

 

 

 

 

3. Is this a life-threatening condition?

 

 

 

 

 

4. Is it likely that the patient’s diabetes contributed to the problem as presented?

 

 

 

 

 

Any references used should be properly cited following APA formatting guidelines.

Micro HW 4

 
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"

BIOLOGY LAB REPORT

BIOLOGY LAB REPORT. hello

i have a biology experiment attached can write for me the introduction, Materials &

Methods and the conclusion

 

Introduction: Defines the subject, the purpose of doing the experiment; includes some background information (usually can be gathered from the experiment’s intro); reader should be able to understand why the experiment was done, what you already know about the experiment, and the specific purpose of the experiment (usually stated in the title). Do not plagiarize your introduction or you will lose points!!! Also, citing is more than copying the work and listing the source! You must cite within the text as well. Your entire introduction cannot be cited!!! You will lose points for intros that don’t have your original thoughts.

 

Materials & Methods: List the main materials used and write in your own words how the experiment is conducted; reader should understand what materials were used, how the materials were used, and what was actually done during the experiment. If the protocol was altered some way in class, you must make the changes in your lab report. Make sure you underline/italicize all microorganisms!!! Methods should be listed step by step vs. paragraph format.

Conclusion:  answer questions at the end of the experiment, then discuss/conclude what your results mean in terms of the experiment and whether you were successful or not. The conclusion should not just state the experiment was successful, but definitive results should be explained here! Your conclusion should explain how the microbes used in the experiment were affected. For example, if the experiment is on gram staining, then your conclusion should state the gram reaction for each organism used. Ex: E.coli was determined to be gram negative, because it did not retain the purple of the primary stain, but retained the pink of the counter stain.

EXPERIMENT

Microscopic Examination

Of Stained Cell Preparations

Learning Objectives

Once you have completed this experiment, you should be familiar with the

1. Theoretical principles of brightfleld microscopy.

2. Component parts of the compound microscope.

3. Use and care of the compound microscope.

4. Practical use of the compound microscope for visualization of cellular morphology from stained slide preparations.

Principle

Microbiology is a science that studies living or​ganisms that are too small to be seen with the naked eye. Needless to say, such a study must in​volve the use of a good compound microscope. Although there are many types and variations, they all fundamentally consist of a two-lens sys​tem, a variable but controllable light source, and mechanical adjustable parts for determining focal length between the lenses and specimen (Figure 4.1).

Components of the Microscope

Stage A fixed platform with an opening in the center allows the passage of light from an illumi​nating source below to the lens system above the stage. This platform provides a surface for the placement of a slide with its specimen over the central opening. In addition to the fixed stage, most microscopes have a mechanical stage that can be moved vertically or horizontally by means of adjustment controls. Less sophisticated micro​scopes have clips on the fixed stage, and the slide must be positioned manually over the central opening.

Illumination The light source is positioned in the base of the instrument. Some microscopes are equipped with a built-in light source to provide direct illumination. Others are provided with a

 

reversible mirror that has one side flat and the other concave. An external light source, such as a lamp, is placed in front of the mirror to direct the light upward into the lens system. The flat side of the mirror is used for artificial light, and the con​cave side for sunlight.

Abbe Condenser This component is found di​rectly under the stage and contains two sets of lenses that collect and concentrate light as it passes upward from the light source into the lens systems. The condenser is equipped with an iris diaphragm, a shutter controlled by a lever that is used to regulate the amount of light entering the lens system.

Body Tube Above the stage and attached to the arm of the microscope is the body tube. This structure houses the lens system that magnifies the specimen. The upper end of the tube contains the ocular or eyepiece lens. The lower portion consists of a movable nosepiece containing the objective lenses. Rotation of the nosepiece po​sitions objectives above the stage opening. The body tube may be raised or lowered with the aid of coarse-adjustment and flue-adjustment knobs that are located above or below the stage-depending on the type and make of the instrument.

Theoretical Principles of Microscopy

To use the microscope efficiently and with mini​mal frustration, you should understand the basic principles of microscopy: magnification, resolu​tion, numerical aperture, illumination, and focusing.

Magnification Enlargement, or magnification, of a specimen is the function of a two-lens system; the ocular lens is found in the eyepiece, and the objective lens is situated in a revolving nose​piece. These lenses are separated by the body tube. The objective lens is nearer the specimen and magnifies it, producing the real image that is projected up into the focal plane and then magni​fied by the ocular lens to produce the final image.

image1.png

Ocular

(eyepiece)

lenses

Body tube lock screw

Head-

Arm

Mechanical stage

Coarse-

adjustment knob

Fine-

adjustment knob

Objective lenses

Diaphragm lever Condenser

Iris diaphragm lever

Substage light

Condenser adjustment knob

Light control

Base

Power switch

Figure 4.1 Leica ATC 2000 compound microscope

The most commonly used microscopes are equipped with a revolving nosepiece containing four objective lenses, each possessing a different degree of magnification. When these are com​bined with the magnification of the ocular lens, the total or overall linear magnification of the specimen is obtained. This is shown in Table 4.1.

Resolving Power or Resolution Although mag​nification is important, you must be aware that unlimited enlargement is not possible by merely increasing the magnifying power of the lenses or by using additional lenses, because lenses are limited by a property called resolving power. By definition, resolving power is how far apart two adjacent objects must be before a given lens shows them as discrete entities. When a lens

cannot discriminate, that is, when the two ob​jects appear as one, it has lost resolution. In​creased magnification will not rectify the loss and will, in fact, blur the object. The resolving power of a lens is dependent on the wavelength of light used and the numerical aperture, which is a characteristic of each lens and imprinted on each objective. The numerical aperture is defined as a function of the diameter of the objective lens in relation to its focal length. It is doubled by use of the substage condenser, which illuminates the ob​ject with rays of light that pass through the speci​men obliquely as well as directly. Thus, resolving power is expressed mathematically as follows:

resolving power =

wavelength of light

2 x numerical aperture

Overall Linear Magnification

MAGNIFICATION

TOTAL MAGNIFICATION

OCULAR LENS

OBJECTIVE LENSES

OBJECTIVE MULTIPLIED BY OCULAR

40x 100x 400x 1000X

Scanning 4x Low-power 10x High-power 40X Oil-immersion 100x

10x 10X 10X 10X

Based on this formula, the shorter the wave​length, the greater the resolving power of the lens. Thus, for the same numerical aperture, short wavelengths of the electromagnetic spec​trum are better suited for higher resolution than are longer wavelengths.

However, as with magnification, resolving power also has limits. You might rationalize that merely decreasing the wavelength will automati​cally increase the resolving power of a lens. Such is not the case, because the visible portion of the electromagnetic spectrum is very narrow and borders on the very short wavelengths found in the ultraviolet portion of the spectrum.

The relationship between wavelength and numerical aperture is valid only for increased re​solving power when light rays are parallel. There​fore, the resolving power is also dependent on another factor, the refractive index. This is the bending power of light passing through air from the glass slide to the objective lens. The refrac​tive index of air is lower than that of glass; as light rays pass from the glass slide into the air, they are bent or refracted so that they do not pass into the objective lens. This would cause a loss of light, which would reduce the numerical aperture and diminish the resolving power of the objective lens. Loss of refracted light can be compensated for by interposing mineral oil, which has the same refractive index as glass, be​tween the slide and the objective lens. In this way, decreased light refraction occurs and more light rays enter directly into the objective lens, producing a vivid image with high resolution (Figure 4.2).

Illumination Effective illumination is required for efficient magnification and resolving power. Since the intensity of daylight is an uncontrolled variable, artificial light from a tungsten lamp is

the most commonly used light source in mi​croscopy. The light is passed through the con​denser located beneath the stage. The condenser contains two lenses that are necessary to produce a maximum numerical aperture. The height of the condenser can be adjusted with the condenser knob. Always keep the condenser close to the stage, especially when using the oil-immersion objective.

image2.png

Objective lens

Refracted (lost)

Slide —[

Condenser

Light source

Figure 4.2 Refractive index in air and in mineral oil

Between the light source and the condenser is the iris diaphragm, which can be opened and closed by means of a lever, thereby regulating the

amount of light entering the condenser. Exces-

sive illumination may actually obscure the speci​men because of lack of contrast. The amount of light entering the microscope differs with each objective lens used. A rule of thumb is that as the magnification of the lens increases, the distance between the objective lens and slide, called working distance, decreases, whereas the nu​merical aperture of the objective lens increases

(Figure 4.3).

Use and Care of the Microscope

You will be responsible for the proper care and use of microscopes. Since microscopes are ex​pensive, you must observe the following regula​tions and procedures.

The instruments are housed in special cabi​nets and must be moved by users to their laboratory benches. The correct and only acceptable way to do this is to grip the microscope arm firmly with the right hand and the base with the left hand, and lift the instrument from the cabinet shelf. Carry it close to the body and gently place it on the laboratory bench. This will prevent colli​sion with furniture or coworkers and will protect the instrument against damage.

Once the microscope is placed on the labora​tory bench, observe the following rules:

1. Remove all unnecessary materials (such as books, papers, purses, and hats) from the lab​oratory bench.

2. Uncoil the microscope’s electric cord and plug it into an electrical outlet.

3. Clean all lens systems; the smallest bit of dust, oil, lint, or eyelash will decrease the efficiency of the microscope. The ocular, scanning, low-power, and high-power lenses may be cleaned by wiping several times with acceptable lens tissue. Never use paper toweling or cloth on a lens surface. If the oil-immersion lens is gummy or tacky, a piece of lens paper moistened with xylol is used to wipe it clean. The xylol is immedi​ately removed with a tissue moistened with 95% alcohol, and the lens is wiped dry with lens paper. Note: This xylol cleansing pro​cedure should be performed only by the in​structor and only if necessary; consistent use of xylol may loosen the lens.

The following routine procedures must be followed to ensure correct and efficient use of the microscope.

1. Place the microscope slide with the specimen within the stage clips on the fixed stage. Move the slide to center the specimen over the opening in the stage directly over the light source.

2. Raise the microscope stage up as far as it will go. Rotate the scanning lens or low-power lens into position. Lower the body tube with the coarse-adjustment knob to its lowest po​sition. Note: Never lower the body tube while looking through the ocular lens.

3. While looking through the ocular lens, use the fine-adjustment knob, rotating it back and forth slightly, to bring the specimen into sharp focus.

4. Adjust the substage condenser to achieve op​timal focus.

5. Routinely adjust the light source by means of the light-source transformer setting, and/or the iris diaphragm, for optimum illumination for each new slide and for each change in magnification.

6. Most microscopes are parfocal, which means that when one lens is in focus, other lenses will also have the same focal length and can be rotated into position without fur​ther major adjustment. In practice, however, usually a half-turn of the fine-adjustment knob in either direction is necessary for sharp focus.

7. Once you have brought the specimen into sharp focus with a low-powered lens, prepa​ration may be made for visualizing the speci​men under oil immersion. Place a drop of oil on the slide directly over the area to be viewed. Rotate the nosepiece until the oil-immersion objective locks into position. Note: Care should be taken not to allow the high-power objective to touch the drop of oil. The slide is observed from the side as the objective is ro​tated slowly into position. This will ensure that the objective will be properly immersed in the oil. The fine-adjustment knob is read​justed to bring the image into sharp focus.

8. During microscopic examination of microbial organisms, it is always necessary to observe several areas of the preparation. This is ac​complished by scanning the slide without the application of additional immersion oil. Note: This will require continuous, very fine ad​justments by the slow, back-and-forth rota​tion of the fine-adjustment knob only.

Diaphragm Opening

Objective

Working Distance

image3.png

image4.png

image5.png

Scanning 4x

4x

Reduced

9-10 mm

Slide

image6.png

image7.png

image8.png

Low power 10x

10x

Not fully opened

5-8 mm

Slide

image9.png

image10.png

image11.png

High power 40x

40x

Not fully

opened

0.5-0.7 mm

J

Slide

image12.png

image13.png

image14.png

Oil immersion 100x

100x

Fully opened

0.13-0.18 mm

Slide

Figure 4.3 Relationship between working distance, objective, and

Diaphragm opening

On completion of the laboratory exercise, re​turn the microscope to its cabinet in its original condition. The following steps are recommended:

1. Clean all lenses with dry, clean lens paper. Note: Use xylol to remove oil from the stage only.

2. Place the low-power objective in position and lower the body tube completely.

3. Center the mechanical stage.

4. Coil the electric cord around the body tube and the stage.

5. Carry the microscope to its position in its cabinet in the manner previously described.

AT THE BENCH

Materials

Slides

Commercially prepared slides of Staphylococcus aureus, Bacillus subtilis, Aquaspirillum iter-sonii, Saccharomyces cerevisiae, and a human blood smear.

Equipment

Compound microscope, lens paper, and immer​sion oil.

Procedure

1. Review the parts of the microscope, making sure you know the names and understand the function of each of these components.

2. Review instructions for the use of the micro​scope, giving special attention to the use of the oil-immersion objective.

3. Examine the prepared slides, noting the shapes and the relative sizes of the cells un​der the high-power (also called high-dry, be​cause it is the highest power that does not use oil) and oil-immersion objectives.

4. Record your observations in the Lab Report.

Observations and Results

Draw several cells from a typical microscopic field as viewed under each mag​nification, and give the total magnification for each objective.

Lab Report

High Power

Oil Immersion

S. aureus

image15.png

image16.png

Magnification

B. subtilis

image17.png

image18.png

Magnification

A. itersonii

image19.png

image20.png

Magnification

S. cerevisiae

image21.png

image22.png

Magnification

Blood smear

image23.png

image24.png

Magnification

Review Questions

1. Explain why the body tube of the microscope should not be lowered while you are looking through the ocular lens.

2. For what purpose would you adjust each of the following microscope components during a microscopy exercise?

a. Iris diaphragm:

b. Coarse-adjustment knob:

c. Fine-adjustment knob:

d. Condenser:

e. Mechanical stage control:

3. As a beginning student in the microbiology laboratory, you experience some difficulties in using the oil-immersion lens. Describe the steps you would take to correct the following problems:

a. Inability to bring the specimen into sharp focus.

b. Insufficient light while viewing the specimen.

c. Artifacts in the microscopic field.

BIOLOGY LAB REPORT

 
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"

Investigating tornadoes

Investigating tornadoes. For this lab we will be investigating tornadoes; how, when, and where they form!

At the end of the lab you should hand in the completed “SevereActivity” as well as the answers to the questions listed throughout this assignment.

Part I Thunderstorm & Tornado Formation

A tornado is a fast rotating column of air that touches the ground at the bottom and a storm cloud at the top. The first step to forming a tornado is:

1. Create a thunderstorm

Thunderstorms are when warm air rises and condenses, forming a cloud. The three necessary ingredients for forming a thunderstorm are

Lift – This is something that makes the air rise and could be surface heating, a cold front or dry line, or even a mountain.

Instability – When the atmosphere is unstable, air that is lifted continues to rise. Just like a hot air balloon.

Moisture – Moisture is the fuel for the storm and is needed to form the clouds and precipitation.

This video describes the ingredients for thunderstorms:

https://www.youtube.com/watch?v=6UyPr6kt7Jg (Links to an external site.)

2. Make the storm long lasting

In order for a storm to last longer we often need a continued source of lift. This source of lift is often a

Boundary – The transition zone between two types of air. A cold front is the boundary between cold air and warm air, while a dry line is a boundary between moist air and dry air.

3. Create rotation in the storm

To get rotation in the storm you need

Shear – Also known as wind shear this is a change in wind with height in the atmosphere. The shear can either be in the speed of the wind or the direction of the wind, but usually both are present when a tornado forms.

The wind shear creates horizontal rotation in the storm

4. Tilt rotation into the vertical

Next the storm updraft (rising air) tilts the horizontal rotation into a vertical direction. We now have what we call a mesocyclone. A mesocyclone is when there is a big slow rotation in a storm, and is indicative of supercell thunderstorms. Mesocyclones are needed to form tornadoes, but not all thunderstorms with mesocyclones produce tornadoes.

5. Stretch and squish the rotation

Now comes what I like to call the “figure skater effect.” The slow mesocylone becomes smaller underneath the storm which makes it speed up, just like a figure skater pulling in their arms. This stretching or squishing usually is caused by the up- and downdrafts of the storm.

This video describes more about the needed conditions and some of what we still don’t know about tornadoes:

https://www.youtube.com/watch?v=BMLZpjRYK9Q

So in summary LIMBS (lift, instability, moisture, boundary, and shear) is needed to form supercells, mesocyclones, and tornadoes, but it doesn’t guarantee that a tornado will form.

Questions 1: Describe in your own words how tornadoes form.

Part II: Tornado Climatology

Tornadoes are primarily a U.S. phenomena. In this section we will explore where and when tornadoes occur. Watch this short video that describes why we get so many tornadoes in the U.S.:

https://www.youtube.com/watch?v=0yiZveJAEp4

This link shows a map of tornado track in the U.S.:

http://uxblog.idvsolutions.com/2012/05/tornado-tracks.html

Question 2: Where are there very few tornadoes? From what you have learned, why do you think this is?

This link shows a similar map, but broken down by the time of year:

http://uxblog.idvsolutions.com/2012/06/seasonal-tornado-habitats-1950-2011.html

This link shows the occurrence of tornado by month and day of year:

http://www.ustornadoes.com/2012/03/14/total-u-s-tornadoes-by-month-and-by-day/

Question 3: Describe how the locations of tornadoes changes throughout the year.

Question 4: Why do you think we see these changes?

Part III: Tornado Forecasting

This page gives a brief description of tornado forecasting, including the products that severe weather forecasts put out to inform the public about the risks and likelihood of severe weather and tornadoes:

http://www.noaa.gov/features/protecting_0808/tornadoes.html

You will now be using weather data to forecast tornadoes. Complete the following activity and scan or photograph it to hand in, along with the other questions in this lab:

SevereActivity.docx

After you have completed the activity, look at the maps below.

This map shows the severe weather forecast from the storm prediction center on April 6, 2003:

day1otlk_20030406_1200_prt.gif

This map shows the actual reports of severe weather on April 6, 2003:

030406_rpts.gif

Questions 5: How well were you able to predict severe weather using the data in the activity? How close were you to identifying the areas that actually had severe weather?

Investigating tornadoes

 
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"