Biology blood typing lab report

Biology blood typing lab report.

1

BIOL 102: Lab 9

Simulated ABO and Rh Blood Typing

Objectives:

After completing this laboratory assignment, students will be able to:

• explain the biology of blood typing systems ABO and Rh

• explain the genetics of blood types

• determine the blood types of several patients

Introduction:

Before Karl Landsteiner discovered the ABO human blood groups in 1901, it was thought that all blood was the

same. This misunderstanding led to fatal blood transfusions. Later, in 1940, Landsteiner was part of a team

who discovered another blood group, the Rh blood group system. There are many blood group systems known

today, but the ABO and the Rh blood groups are the most important ones used for blood transfusions. The

designation Rh is derived from the Rhesus monkey in which the existence of the Rh blood group was

discovered.

Although all blood is made of the same basic elements, not all blood is alike. In fact, there are eight different

common blood types, which are determined by the presence or absence of certain antigens – substances that

can trigger an immune response if they are foreign to the body – on the surface of the red blood cells (RBCs

also known as erythrocytes).

ABO System:

The antigens on RBCs are agglutinating antigens or agglutinogens. They have been designated as A and B.

Antibodies against antigens A and B begin to build up in the blood plasma shortly after birth. A person

normally produces antibodies (agglutinins) against those antigens that are not present on his/her erythrocytes

but does not produce antibodies against those antigens that are present on his/her erythrocytes.

• A person who is blood type A will have A antigens on the surface of her/his RBCs and will have

antibodies against B antigens (anti-B antibodies). See picture below.

• A person with blood type B will have B antigens on the surface of her/his RBCs and will have antibodies

against antigen A (anti-A antibodies).

• A person with blood type O will have neither A nor B antigens on the surface of her/his RBCs and has

BOTH anti-A and anti-B antibodies.

• A person with blood type AB will have both A and B antigens on the surface of her/his RBCs and has

neither anti-A nor anti-B antibodies.

The individual’s blood type is based on the antigens (not the antibodies) he/she has. The four blood groups

are known as types A, B, AB, and O. Blood type O, characterized by an absence of A and B agglutinogens, is

the most common in the United States (45% of the population). Type A is the next in frequency, found in 39%

of the population. The incidences of types B and AB are 12% and 4%, respectively.

 

 

 

 

 

 

 

2

 

Table 1: The ABO System

Blood Type

Antigens on RBCs

Antibodies in the Blood

Can GIVE Blood to Groups:

Can RECEIVE Blood from Groups:

A A Anti-B A, AB O, A

B B Anti-A B, AB O, B

AB A and B Neither anti-A

nor anti-B AB O, A, B, AB

O Neither A nor

B Both anti-A and anti-B

O, A, B, AB O

 

Blood Typing: Process of Agglutination

Blood typing is performed with antisera containing high levels of anti-A and anti-B antibodies/agglutinins. The

simple test is performed as follows:

 

Several drops of each kind of antiserum are added to separate samples of

blood. If agglutination (clumping of erythrocytes) occurs only in the

suspension to which only anti-A serum was added, the blood type is A. If

agglutination occurs only in the anti-B mixture, the blood type is B (see image).

Agglutination in both samples indicates that the blood type is AB. The absence

of agglutination indicates that the blood type is O.

 

 

 

 

Table 2: Agglutination Reaction of ABO Blood-Typing Sera

Reaction to Anti-A Serum Reaction to Anti-B Serum Blood Type

Agglutination (clumping)

No agglutination (no clumping)

Type A

No agglutination (no clumping)

Agglutination (clumping)

Type B

Agglutination (clumping)

Agglutination (clumping)

Type AB

No agglutination (clumping)

No agglutination (clumping)

Type O

 

 

 

3

 

Rh System

In the period between 1900 and 1940, a great deal of research was done to discover the presence of other

antigens on human red blood cells. In 1940, an antigen designated as Rh factor, was discovered. Although it

exists as six antigens, the D factor is responsible for the Rh+ condition. The Rh factor is found in 85% of

Caucasians, 94% of African-Americans, and 99% of Asians. An individual who possesses these antigens is

designated as Rh+; an individual who lacks them is designated Rh-. The anti-Rh antibodies of the systems are

not normally present in the plasma, but anti-Rh antibodies can be produced upon exposure and sensitization to

Rh antigens.

The genetics of the Rh blood group system is complicated by the fact that more than one antigen can be

identified as the result of the presence of a given Rh gene. Initially, the Rh phenotype was thought to be

determined by a single pair of alleles. However, there are at least eight alleles for the Rh factor. For the

purpose of simplicity, consider one allele: Rh+ is dominant over Rh-. Thus a person with Rh+/Rh-

heterozygous genotype has Rh+ blood.

Importance of Blood Typing

Early attempts to transfer blood from one person to another produced varied results. If incompatible blood

types are mixed, erythrocyte destruction, agglutination and other problems can occur. For instance, if a person

with Type B blood is transfused with blood type A, the recipient’s anti-A antibodies will attack the incompatible

Type A erythrocytes. The Type A erythrocytes will be agglutinated, and hemoglobin will be released into the

plasma. In addition, incoming anti-B antibodies of the Type A blood may also attack the Type B erythrocytes of

the recipient with similar results. This problem may not be serious, unless a large amount of blood is

transfused.

The ABO blood groups and other inherited antigenic characteristics of red blood cells are often used in

medico-legal situations involving identification or disputed paternity. In paternity cases a comparison of the

blood groups of mother, child, and alleged father may exclude the man as a possible parent of the child. For

example, a child of blood type AB whose mother is Type A could not have as a father a man whose blood

group is Type O. Blood typing does not prove that an individual is the father of a child, it merely indicates

whether or not he is a possible parent.

 

 

4

The Genetics of Blood Types

Alleles are different versions of the same gene that can occupy the same locus (gene location on a

chromosome). There are usually two alleles of each gene. Humans have two copies of each gene because

they receive one copy from their mother and one copy from their father. If they receive two of the same alleles,

they are considered homozygous. If they have two different alleles, they are considered heterozygous. Alleles

can also be dominant and recessive. Alleles are dominant when the presence of one allele is sufficient to

express the trait and recessive when two copies of the allele must be present to express the trait.

The human blood types A, B, AB, and O are inherited by multiple alleles. Multiple alleles refer to three or more

genes that occupy a single locus. In the case of blood types, there are three versions of the gene which

encodes agglutinogens: A, B and O. The A and B alleles are both dominant and are considered co-dominant.

The O allele is recessive to both A and B alleles.

The alleles for blood types are often designated with the letter I with a subscript:

• The A allele is designated IA and codes for the synthesis of agglutinogen A

• The B allele is designated IB and codes for synthesis of agglutinogen B

• The O allele is designated i or IO and does not produce any antigens.

The phenotypes listed in the table below are produced by the combinations of the three different alleles IA, IB,

and IO.

 

 

 

 

 

 

 

 

Using Punnett Squares to Determine Future Genetic Combinations

A Punnett square is a chart which shows/predicts all possible gene combinations in a cross of parents (whose

genes are known). Punnett squares are named for an English geneticist, Reginald Punnett. He discovered

some basic principles of genetics, including sex linkage and sex determination. He worked with the feather

color traits of chickens in order to quickly separate male and female chickens.

Punnett squares can also be used to predict the blood type of future offspring between two people with a

known genotype. When creating the chart, the first step is to designate letters for dominant and recessive

alleles. It has been previously mentioned that A (IA) and B (IB) are both dominant alleles while O (i) is

recessive; therefore, this step is complete. The second step is to write the genotype (genetic combination) of

each parent and the third step is to list the alleles that each parent can contribute. If the parent is homozygous

(both alleles are either dominant or recessive), then she/he can only pass on the dominant allele that she/he

possesses. If the parent is heterozygous (one allele is dominant and the other allele is recessive or she/he has

both A and B dominant alleles), then he/she can pass on either allele. The fourth step is to draw the Punnett

square (one large square containing four smaller squares) and write the possible genes of one parent along

Table 3: Phenotypes and Possible Genotypes

Phenotype Possible Genotypes

A IA IA (homozygous dominant A) OR

IA i (heterozygous A)

B IB IB (homozygous dominant B) OR

IB i (heterozygous B)

AB IA IB (co-dominant AB)

O ii (homozygous recessive O)

 

 

5

the top and the possible genes of the other parent along the left side. The fifth step is to fill the smaller square

by transferring in the parental letter above the square and the parental letter to the left of the square. The sixth

step is to list all of the possible genotypes (the combinations in each small square) and resultant phenotypes

(physical trait). Figure 1 below is of a cross (mating) between a person who is homozygous dominant A (type

A) and a person who is homozygous recessive (type O).

 

 

 

 

 

 

All of the children would have a heterozygous A genotype and blood type A phenotype.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IA IA

i IA i IA i

i IA i IA i

 

 

6

LAB DATASHEET Purpose Each group will perform blood typing analyses to determine the unknown blood types of four patients using the

ABO and Rh factor systems.

 

Procedure

1. Obtain four (4) blood typing trays and use the wax pencil to label them as follows: P1, P2, P3, and P4.

2. Place five (5) drops of Patient 1 Simulated Blood Sample in each well (A, B, and Rh) of the P1 tray.

a. Place three (3) drops of Anti-A Simulated Serum in Well A and mix the blood and serum with a stirring

stick for ten (10) seconds.

b. Place three (3) drops of Anti-B Simulated Serum in Well B and mix the blood and serum with a stirring

stick for ten (10) seconds.

c. Place three (3) drops of Anti-Rh Simulated Serum in Well Rh and mix the blood and serum with a

stirring stick for ten (10) seconds.

d. Carefully examine each well to determine if the simulated blood in each well has clumped

(agglutinated). Record your results and observations in Table 4.

3. Place five (5) drops of Patient 2 Simulated Blood Sample in each well (A, B, and Rh) of the P2 tray.

Repeat directions “a-d” listed under Step 2.

4. Place five (5) drops of Patient 3 Simulated Blood Sample in each well (A, B, and Rh) of the P3 tray.

Repeat directions “a-d” listed under Step 2.

5. Place five (5) drops of Patient 4 Simulated Blood Sample in each well (A, B, and Rh) of the P4 tray.

Repeat directions “a-d” listed under Step 2.

6. Thoroughly rinse all trays and stirring sticks and return to their proper location.

 

 

 

Table 4: Agglutination Reaction Results

 

Anti-A

Serum

(+ or -)

Anti-B Serum

(+ or -)

Anti-Rh

Serum

(+ or -)

Observations

(Clumping?) Blood Type

Patient 1:

Mr. Smith

Patient 2:

Mr. Jones

Patient 3:

Mr. Green

Patient 4:

Ms. Brown

 

 

7

Analysis of Results

1. What ABO agglutinogens are present on the red blood cells of Mr. Green’s blood?

2. What ABO agglutinins are present in the serum of Mr. Green’s blood?

3. If Mr. Jones needed a transfusion, what ABO type(s) of blood could he safely receive?

4. If Ms. Brown were serving as a donor, what ABO blood type(s) could receive her blood safely?

5. Why is it necessary to match the donor’s and the recipient’s blood before a transfusion is given?

Biology blood typing lab report

 
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"

Anthropology Discussion 6

Anthropology Discussion 6. Sources

1. http://physanth.org/about/position-statements/biological-aspects-race/

2. https://www.psychologytoday.com/blog/busting-myths-about-human-nature/201305/how-not-be-racist

3. https://www.psychologytoday.com/blog/busting-myths-about-human-nature/201204/race-is-real-not-in-the-way-many-people-think

4. http://historynewsnetwork.org/article/1796

5. https://www.psychologytoday.com/blog/busting-myths-about-human-nature/201205/men-and-women-are-the-same-species

6. https://www.youtube.com/watch?v=N56CSDu_ZdU&feature=youtu.be

 

PROMPT 1

Race is not a biologically meaningful way of classifying human beings but Western racial classifications continue to have significant consequences for the lived experiences of human beings. Why is it inaccurate to think of race as biology? What is race?

 

PROMPT 2

Fuentes argues in “How not to be racist” that pretty much everyone is a little racist some of the time. Why does he argue this? What does he argue we can do to counter this?

 

PROMPT 3

PBS has a great website called RACE–The Power of an Illusion (Links to an external site.) (Links to an external site.)Links to an external site.. Take a look around the site and see what kind of stuff you learn. What is most interesting to you?

 

PROMPT 4

Forced sterilization of tens of thousands of women and men was carried out in the United States as government policy throughout much of the 20th century. Using the website, “Eugenics: Compulsory Sterilization in 50 American States” (Links to an external site.)Links to an external site., discuss the history of forced sterilization in the United States of America.

 

PROMPT 5

While human beings are one of the most genetically unified species on the planet, all humans share about 99.9% of our DNA, we do see that there can be interesting phenotypic variation between human populations. Since we know that “race” is not a meaningful way to understand that variation, what is the framework we do use to understand that variation? What explains why human populations vary in some phenotypic characteristics? What are some of the differences?

 

PROMPT 6

The film, The Human Family Tree, traces human migration over the last 60,000years or so by looking at the ancestry of residents of New York. What are some of the interesting things you learned watching this film?

 

PROMPT 7

In the first lecture, I asked you to consider what you think about when you hear the phrase “human nature”. How have your ideas about human nature changed over this course? What is human nature? Do you define it differently today than you did at the beginning of class?

What are you going to take with you from this course? What are the most significant things you have learned about understanding what it means to be human?

 

 

Anthropology Discussion 6

 
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"

UMUC Biology 102/103 Lab 4: Enzymes

UMUC Biology 102/103 Lab 4: Enzymes. Download a plgrism free answer from here

 

 

Your Full Name:

UMUC Biology 102/103

Lab 4: Enzymes

INSTRUCTIONS:

 

·         On your own and without assistance, complete this Lab 4 Answer Sheet electronically and submit it via the Assignments Folder by the date listed in the Course Schedule (under Syllabus).

·         To conduct your laboratory exercises, use the Laboratory Manual located under Course Content. Read the introduction and the directions for each exercise/experiment carefully before completing the exercises/experiments and answering the questions.

·         Save your Lab 4 Answer Sheet in the following format:  LastName_Lab4 (e.g., Smith_Lab4).

·         You should submit your document as a Word (.doc or .docx) or Rich Text Format (.rtf) file for best compatibility.

Pre-Lab Questions

 

  1. How could you test to see if an enzyme was completely saturated during an experiment?

 

  1. List three conditions that would alter the activity of an enzyme. Be specific with your explanation.

 

  1. Take a look around your house and identify household products that work by means of an enzyme. Name the products, and indicate how you know they work with an enzyme.

 

 

Experiment 1: Enzymes in Food

This experiment tests for the presence of amylase in food by using Iodine-Potassium Iodide, IKI. IKI is a color indicator used to detect starch. This indicator turns dark purple or black in color when in the presence of starch. Therefore, if the IKI solution turns to a dark purple or black color during the experiment, one can determine that amylase is not present (because presence of amylase would break down the starch molecules, and the IKI would not change color).

concept_tab_2

Materials

(1) 2 oz. Bottle (Empty)
(1) 100 mL Graduated Cylinder
30 mL Iodine-Potassium Iodide, IKI
Permanent Marker
Ruler
2 Spray Lids
30 mL Starch (liquid)
*Cutting Board

 

*2 Food Products (e.g., ginger root, apple, potato, etc.)
*Kitchen Knife
*Paper Towel
*Saliva Sample
*Tap Water

*You Must Provide

 

Procedure:

  1. Remove the cap from the starch solution. Attach the spray lid to the starch solution.
  2. Rinse out the empty two ounce bottle with tap water. Use the 100 mL graduated cylinder to measure and pour 30 mL of IKI into the empty two ounce bottle. Attach the remaining spray lid to the bottle.
  3. Set up a positive control for this experiment by spraying a paper towel with the starch solution. Allow the starch to dry for approximately one hour (this time interval may vary by location).
  4. In the mean time, set up a negative control for this experiment. Use your knowledge of the scientific method and experimental controls to establish this component (hint: what should happen when IKI solution contacts something that does not contain starch?) Identify your negative control in Table 1.

Note: Be sure to space the positive and negative controls apart from each other to prevent cross-contamination.

  1. When the starch solution has dried, test your positive and negative controls. This step establishes a baseline color scale for you to evaluate the starch concentration of the food products you will test in Steps 7 – 11. Record your results in Table 1.
  2. Select two food items from your kitchen cabinet or refrigerator.
  3. Obtain a kitchen knife and a cutting board. Carefully cut your selected food items to create a fresh surface.
Figure 3: Sample set-up.
Figure 3: Sample set-up.
  1. Gently rub the fresh/exposed area of the food items on the dry, starch-sprayed paper towel back and forth 10 – 15 times. Label where each specimen was rubbed on the paper towel with a permanent marker (Figure 3).
  2. Wash your hands with soap and water.
  3. Take your finger and place it on your tongue to transfer some saliva to your finger. Then, rub your moistened finger saliva into the paper towel. Repeat this step until you are able to adequately moisten the paper towel.

    Note: You should always wash your hands before touching your tongue! Alternatively, if you do not wish to put your hands in your mouth, you may also provide a saliva sample by spitting in a separate bowl and rubbing the paper towel in the saliva. Be sure not to spit on the paper towel directly as you may unintentionally cross-contaminate your samples.

  4. Wait five minutes.
  5. Hold the IKI spray bottle 25 – 30 cm away from the paper towel, and mist with the IKI solution.
  6. The reaction will be complete after approximately 60 seconds. Observe where color develops, and consider what these results indicate. Record your results in Table 1.
Table 1: Substance vs. Starch Presence
Substance Resulting Color Presence of Starch?
Positive Control: Starch Dark Purple Yes
Negative Control : Cellulose Brownish red color  No
Food Product: Apple Dark Purple  yes
Food Product: Potato Dark Purple  yes
Saliva: Amylase Brownish red color  No

 

Post Negative Control -Lab Questions

1.      What were your controls for this experiment? What did they demonstrate? Why was saliva included in this experiment?

2.      What is the function of amylase? What does amylase do to starch?

3.      Which of the foods that you tested contained amylase? Which did not? What experimental evidence supports your claim?

 

4.      Saliva does not contain amylase until babies are two months old. How could this affect an infant’s digestive requirements?

 

5.      There is another digestive enzyme (other than salivary amylase) that is secreted by the salivary glands. Research to determine what this enzyme is called. What substrate does it act on? Where in the body does it become activated, and why?

 

6.      Digestive enzymes in the gut include proteases, which digest proteins. Why don’t these enzymes digest the stomach and small intestine, which are partially composed of protein?

 

Experiment 2: Effect of Temperature on Enzyme Activity

Yeast cells contain catalase, an enzyme which helps convert hydrogen peroxide to water

Figure 4: Catalase catalyzes the decomposition of hydrogen peroxide to water and oxygen.
Figure 4: Catalase catalyzes the decomposition of hydrogen peroxide to water and oxygen.

and oxygen. This enzyme is very significant as hydrogen peroxide can be toxic to cells if allowed to accumulate. The effect of catalase can be seen when yeast is combined with hydrogen peroxide (Catalase: 2 H2O2 → 2 H2O + O2).

In this lab you will examine the effects of temperature on enzyme (catalase) activity based on the amount of oxygen produced. Note, be sure to remain observant for effervescence when analyzing your results.

 

Materials

(2) 250 mL Beakers
3 Balloons
30 mL 3% Hydrogen Peroxide, H2O2
Measuring Spoon
Permanent Marker
Ruler
20 cm String

 

3 Test Tubes (Glass)
Test Tube Rack
Thermometer
Yeast Packet
*Hot Water Bath
*Stopwatch

*You Must Provide

 

Procedure

  1. Use a permanent marker to label test tubes 1, 2, and 3. Place them in the test tube rack.
  2. Fill each tube with 10 mL hydrogen peroxide. Then, keep one of the test tubes in the test tube rack, but transfer the two additional test tubes to two separate 250 mL beakers.
  3. Find one of the balloons, and the piece of string. Wrap the string around the uninflated balloon and measure the length of the string with the ruler. Record the measurement in Table 2.
  4. Create a hot water bath by performing the following steps:
    1. Determine if you will use a stovetop or microwave to heat the water. Use the 100 mL graduated cylinder to measure and pour approximately 200 mL of water into a small pot or microwave-safe bowl (you will have to measure this volume in two separate allocations).
    2. If using a stovetop, obtain a small pot and proceed to Step 4c. If using a microwave, obtain a microwave-safe bowl and proceed to Step 4e.
    3. If using a stove, place a small pot on the stove and turn the stove on to a medium heat setting.
    4. Carefully monitor the water in the pot until it comes to a soft boil (approximately 100 °C). Use the thermometer provided in your lab kit to verify the water temperature. Turn the stove off when the water begins to boil. Immediately proceed to Step 5.

      CAUTION: Be sure to turn the stove off after creating the hot water bath. Monitor the heating water at all times, and never handle a hot pan without appropriate pot holders.

    5. If using a microwave, place the microwave-safe bowl in the microwave and heat the water in 30 second increments until the temperature of the water is approximately 100 °C. Use the thermometer provided in your lab kit to verify the water temperature. Wait approximately one minute before proceeding to Step 5.
  5. Place Tube 1 in the refrigerator. Leave Tube 2 at room temperature, and place Tube 3 in the hot water bath.

Important Note: The water should be at approximately 85 °C when you place Tube 3 in it. Verify the temperature with the thermometer to ensure the water is not too hot! Temperatures which exceed approximately 85  °C may denature the hydrogen peroxide.

  1. Record the temperatures of each condition in Table 2. Be sure to provide the thermometer with sufficient time in between each environment to avoid obscuring the temperature readings.
  2. Let the tubes sit for 15 minutes.
  3. During the 15 minutes prepare the balloons with yeast by adding ÂĽ tsp. of yeast each balloon. Make sure all the yeast gets settled to the bulb of the balloon and not caught in the neck. Be sure not spill yeast while handling the balloons.
  4. Carefully stretch the neck of the balloon to help ensure it does not rip when stretched over the opening of the test tube.
  5. Attach the neck of a balloon you prepared in step 8 to the top of Tube 2 (the room temperature test tube) making sure to not let the yeast spill into the test tube yet. Once the balloon is securely attached to the test tube lift the balloon and allow the yeast to enter the test tube. Tap the bulb of the balloon to ensure all the yeast falls into the tube.
  6. As quickly and carefully as possible remove the Tube 1 (cold) from the refrigerator and repeat steps 9 – 10 with Tube 1 using a balloon you prepared in step 8.
  7. As quickly and carefully as possible remove Tube 3 (hot) from the hot water bath and repeat steps 9 – 10 with Tube 3 using a balloon you prepared in step 8.
  8. Swirl each tube to mix, and wait 30 seconds.
  9. Wrap the string around the center of each balloon to measure the circumference. Measure the length of string with a ruler. Record your measurements in Table 2.
Table 2: Balloon Circumference vs. Temperature
Tube Temperature (°C) Balloon Circumference (Uninflated; cm) Balloon Circumference (Final; cm)
1 – (Cold)      
2 – (RT)    
3 – (Hot)    

 

 

Post-Lab Questions

1.      What reaction is being catalyzed in this experiment?

2.      What is the enzyme in this experiment? What is the substrate?

3.      What is the independent variable in this experiment? What is the dependent variable?

4.      How does the temperature affect enzyme function? Use evidence from your data to support your answer.

 

5.      Draw a graph of balloon diameter vs. temperature. What is the correlation?

6.      Is there a negative control in this experiment? If yes, identify the control. If no, suggest how you could revise the experiment to include a negative control.

 

7.      In general, how would an increase in substrate alter enzyme activity? Draw a graph to illustrate this relationship.

8.      Design an experiment to determine the optimal temperature for enzyme function, complete with controls. Where would you find the enzymes for this experiment? What substrate would you use?

Download a plgrism free answer from here

UMUC Biology 102/103 Lab 4: Enzymes

 
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"

Light Light Bulb

Light Light Bulb. Name: __________________________ Section: ____ Date: ________________

LAB ACTIVITY: Chapter 20 – Sustainable Energy

Choosing a Light Bulb: The following table provides information on two types of light bulbs available at a local store.

Type of bulb

Estimated lifetime (hours)

Cost per bulb ($)

75 W incandescent

750

0.50

18 W compact fluorescent

7,500

5.00

Assume that

(i) each bulb lasts exactly its estimated lifetime.

(ii) each bulb provides the same amount of usable light.

(iii) the cost of electricity is $0.10 per kilowatt-hour.

(a) Calculate the total lifetime cost for using each type of bulb.

(b) Calculate the total cost of using the incandescent bulb and of using the compact fluorescent bulb for 7500 hours (the lifetime of the compact fluorescent bulb).

(c) Most electricity in the United States is generated by fossil fuel–burning power plants that produce atmospheric pollution. Given that knowledge, explain which type of light bulb has the smaller ecological footprint.

12

1

Light Light Bulb

 
"Looking for a Similar Assignment? Get Expert Help at an Amazing Discount!"